View clinical trials related to Artificial Intelligence.
Filter by:The goal of this methodological, retrospective and prospective study is to; it is a tool to develop a risk estimator tool to detect risk gaps in individuals using artificial intelligence technology that is dangerous for those with CVC in adult intensive care patients, to test risk level estimation frameworks and to evaluate outcomes in the clinic. In our study, it is also our aim to protect, to present the security measures to prevent the risk of CVC with an artificial intelligence model, in an evidence-based way. The main question[s]it aims to answer are: - Can the risk of CVC-related infection be determined in adult intensive care patients using artificial intelligence? - To what degree of accuracy can the risk of CVC-associated infection be determined in adult intensive care patients using artificial intelligence? - What are the nursing practices that can reduce the risk of CVC-related infections? Methodology to develop an artificial intelligence-based CVC-associated infection risk level determination algorithm, retrospective using data from Electronic Health Records (EHR) patient data and manual patient files between January 2018 and December 2022 to create the algorithm and test the model accuracy, and the development stages of the model After the completion of the model, up-to-date data were collected for the use of the model and it was planned to be done prospectively.
The emergence of artificial intelligence (AI) and specifically deep learning (DL) have shown great potentials in finding radiographic features and treatment planning in the field of cariology and endodontics . A growing body of literature suggests that DL models might assist dental practitioners in detecting radiographical features such as carious lesions, periapical lesions, as well as predicting the risk of pulp exposure when doing caries excavation therapy. Although, current literature lacks sufficient research on the effect of sufficient training of dental practitioners for using AI-based platforms. This prospective randomized controlled trial aims to assess the performance of students when using an AI-based platform for pulp exposure prediction with and without sufficient preprocedural training. The hypothesis is that participants performance at group with sufficient training is similar to the group without sufficient training.
In this study, we proposed a prospective study about the effect of the automatic surveillance system on surveillance rate of colorectal postpolypectomy patients. The enrolled patients were divided into group A with intelligent surveillance system reminding though telephone and message, group B with intelligent surveillance system reminding though message, group C with manual reminder, and group D with natural state. The surveillance among the four groups were compared.
In this study, we collected the data of immunohistochemistry, gene detection, image, OS, PFS, Orr, and so on. Secondly, the database of immunotherapy for malignant tumor was established, and the predictive model was constructed to verify and establish the rationality and validity of the biomarkers and predictive system of immunotherapy
This is a pragmatic trial that will measure if the use of AI to identify patients with complex care needs and language barriers, as well as active reaching out to clinicians to offer the use of interpreter services will improve the frequency of interpreter use and reduce the time to first interpreter use
In this study, the EUS intelligent picture reporting system can automatically generate reports after reading videos of EUS examinations. This function can standardize the quality of endoscopic ultrasound image reporting and reduce the work burden of ultrasound endoscopists.
The objective of this study is to assess the effectiveness of an AI-based reporting system for upper gastrointestinal endoscopy. The primary question that this study aims to address is whether the reporting system can enhance the completeness and accuracy of endoscopic reports when assisted by AI, as drafted by endoscopists. Patients will be randomly assigned to either the experimental group or the control group. In the experimental group, physicians will draft EGD reports with the assistance of the AI-based reporting system, while in the control group, physicians will use the conventional reporting system to draft EGD reports. At the same time, the AI-based reporting system will automatically generate a report of the EGD examination.
The goal of this observational study is to evaluate the effectiveness of an AI-based reporting system for upper gastrointestinal endoscopy. The main question it aims to answer is: Whether the AI-based reporting system can improve the completeness of the reports, which are drafted by endoscopists with the AI assistance. Participants will undergo upper gastrointestinal endoscopy examination as routine. The junior endoscopists will draft the report with the assiatance of the AI system. And the senior and expert endoscopists will draft the report using the traditional reporting system without AI assistance.
This study intends to collect ophthalmologic examination results, pulmonary examination results and related indexes from patients with pulmonary disease and control populations, and combine big data analysis and artificial intelligence technology to explore whether new methods can be provided for early screening strategies for pulmonary disease with the aid of ophthalmologic examination, and thus assist in identifying the types of pulmonary disease and determining disease prognosis.
In this study, the investigators proposed a prospective study about the effectiveness of speech and image recognition-based system in improving reporting quality during colonoscopy for colonoscopy report quality in endoscopists. The participants would be divided into two groups. For the collected colonoscopy videos, group A would record their observations with the assistance of the artificial intelligence system. The artificial intelligence assistant system can automatically capture bowel segment images and prompt abnormal lesions. Group B would complete the endoscopy report without special prompts. After a period of washout period, the two groups switched, that is, group A without AI assistance and group B with AI assistance to complete the colonoscopy report. Then, the completeness of the colonoscopy report, the completeness of capturing anatomical landmarks and detected lesions, the completeness of structured description, the accuracy of lesion reporting, the time for reporting and the satisfaction with the reporting system are compared with or without AI assistance.