View clinical trials related to Apnea.
Filter by:This study investigates the changes in difficult airway markers at 6 months post operatively in patients undergoing obstructive sleep apnoea surgery
The goal of this observational study is to further evaluate the efficacy and mechanism of action of the Cryosa Procedure, a novel procedure intended to treat obstructive sleep apnea (OSA). The patient population includes participants with OSA who are enrolled in the ARCTIC-3 study and are undergoing the Cryosa Procedure. The main questions we aim to answer are: (1) evaluate predictors of successful treatment with the Cryosa Procedure, which is described in more detail in the ARCTIC-3 protocol (IRB #854182), and (2) evaluate a potential mechanism of action of this novel therapy. We hypothesize that higher baseline quantities of oropharyngeal fat and higher baseline upper airway neurotonic activity will be correlated with a successful reduction in OSA symptom severity as measured by a change in apnea-hypopnea index values. We also hypothesize that responders will have a decrease in oropharyngeal fat, which would indicate the mechanism of action of this novel therapy is a loss in oropharyngeal fat. Participants will be asked to: 1. have an MRI before undergoing the Cryosa Procedure 2. have an ultrasound before the Cryosa Procedure 3. permit the use of pressure-sensing catheters and ultrasound during their drug-induced sleep endoscopy, which is part of the ARCTIC-3 protocol 4. have an MRI after the Cryosa Procedure 5. have an ultrasound after the Cryosa Procedure.
The best perioperative strategy for obstructive sleep apnea (OSA) in bariatric surgery remains unclear. A strategy is to monitor patients and administer preventive oxygen therapy during the first postoperative night. However it is unknown what if preventive oxygen therapy is necessary. The goal of this trial is to compare the Apnea-Hypopnea Index (AHI) in participants with or without preventive oxygen therapy. Methods: Participants are patients who underwent bariatric surgery without treated OSA and will be will be randomized into arm A or arm B: Arm A: First postoperative night in the hospital with preventive oxygen therapy (standard care), Arm B: First postoperative night in hospital without preventive oxygen therapy (intervention).
Obstructive sleep apnea (OSA) is a sleep-related respiratory dysfunction. The prevalence of OSA is increasing with the increasing rates of obesity and elderly population worldwide. Perioperative anesthesia management should be adjusted to improve patient safety in patients with OSA. In OSA patients, positive pressure ventilation support may be required in the preoperative period, various ventilation strategies may be required in the intraoperative period, different pharmacologic agents may need to be avoided, and intensive care unit follow-up or noninvasive ventilation support may be required in the postoperative period. However, it is reported that a significant percentage of OSA patients remain undiagnosed. ASA (American Society of Anesthesiologists) has reported the criteria that should be questioned in order to determine the risk of patients in terms of OSA and to initiate the diagnostic process in risky patients and to make appropriate anesthesiologic arrangements in the perioperative period. In addition, the STOP-BANG assessment scale, which is widely used all over the world in OSA risk assessment, is also used in OSA risk assessment. It is thought that dental caries and extraction needs may be higher in OSA patients, especially since open-mouth sleeping accompanies the situation. In this respect, it is also important for patients to be diagnosed with OSA as it may prevent dental damage due to open-mouth sleeping in the future. Identifying patients at risk for OSA and directing them to the diagnostic process is very important for patient safety. Within the scope of the study, the criteria recommended by ASA and STOP-BANG score will be evaluated and recorded. Risk stratification in terms of STOP-BANG questionnaire and ASA criteria will be done separately for each patient and for each classification method. Patients at high risk will be consulted to the relevant medical department in the preoperative period for further investigation and treatment. In addition, it is aimed to correlate the risk levels determined in the study with postoperative respiratory complications and recovery time.
This study was conducted on 26 patients with obstructive sleep apnea. The patients were divided randomly and equally into two equal groups. In group I, the patients were treated with LLLT, while in group II, the patients were treated with dextrose injection. The patients were evaluated by: Medical history utilizing sleep unit medical sheet, physical examination including: anthropometric measures, epworth sleepiness scale, and Berlin questioner, and Polysomnography
This proof-of-concept study will evaluate the impact of surgically placing and stimulating the hypoglossal nerve and/or a second neural target Ansa Cervicalis, with a set of off-the-shelf electrode arrays.
Apneas (breath-holds) are increasingly being tested in human subjects to understand how the human body operates. Apneas decrease heart rate and increase blood pressure. These findings are driving current research into the effects of oxygen concentrations on the heart rate and blood pressure responses to apneas and the effect of breath-hold training on these responses. The interest in apnea research is three-fold: 1. Apneas are a nervous system stressor that can help researchers better understand the fundamental operation of the human body; 2. Elite divers can use findings from research to better their training and performance; and 3. The scientific understanding of apneas may translate to a better understanding of sleep apnea. Despite this interest, little is known about the repeatability (the consistency within a single day) and reproducibility (the consistency between days) in the heart rate and blood pressure responses to apneas. This uncertainty limits the scientific interpretations from previous results. This study aims to determine the repeatability and reproducibility of heart rate and blood pressure responses to apneas. The goals of the study are: 1. To provide greater certainty to previous results; and 2. Inform best practices for future studies. The study requires 20 healthy volunteers (10 females) and will measure heart rate, blood pressure, breathing parameters (expired gas concentrations, breathing volume and rate), and oxygen saturation. During the protocol, participants will complete two maximal voluntary apneas and five test apneas. The test apneas will all be the same length based on the longer of the two maximal voluntary apneas. Before each apnea, participants will also breathe low oxygen concentrations (hypoxia). Hypoxia provides a bigger decrease in heart rate during apneas than room air which makes it easier to see changes in heart rate responses between apneas (i.e., bigger signal-to-noise ratio). Participants will complete two identical test sessions on back-to-back days. The differences in heart rate and blood pressure responses to the five apneas within each session will determine repeatability and the differences between sessions will determine reproducibility. The investigators hypothesize that repeatability will be good and that repeatability within a session will be better than reproducibility between sessions.
The prevalence of sleep-disordered breathing is high, with an apnea-hypopnea index of over 15 per hour found in 49.7% of men and 23.4% of women in the general population (1). The gold standard treatment for sleep-disordered breathing is continuous positive airway pressure (CPAP) therapy (2). However, nearly 30% of patients are considered non-adherent to CPAP treatment (3). Moreover, the number of hours of CPAP usage has been shown to be directly associated with a reduction in objective and subjective sleepiness, and improvement in daytime functioning (4). A recent prospective study conducted in a French clinical population cohort of 5138 participants found an effect of CPAP treatment duration on reducing the risk of developing a major cardiovascular event (stroke, myocardial infarction, all-cause mortality) (5). Therefore, the poor adherence to CPAP treatment represents a public health challenge for healthcare professionals managing these patients. Several predictors for non-adherence can be identified, such as using CPAP for less than 4 hours per night during the initial treatment phase, moderate to severe obstructive sleep apnea, or low self-esteem (6). Measures aimed at promoting patient adaptation from the initiation of treatment are crucial as this period determines long-term adherence to CPAP therapy (7). Among these measures, there is the management of "physical" adverse effects such as xerostomia (using a humidifier), feeling too much or too little air (modifying CPAP pressure profiles), skin problems, and mask air leaks (interface adjustment), which are well-known and applied by health care organization providing the CPAP machines (2). On top of these "technical" problems, patients related issues such as mask-induced anxiety, psychosocial conditions, and dysfunctional thoughts about CPAP treatment may prevent patients from using their CPAP properly. Innovative tools such as psycho corporal therapies, including medical hypnosis, could be used in these situations. A recent literature review focusing on the impact of medical hypnosis on sleep disorders in adult patients found an improvement in various sleep parameters (sleep quality, insomnia complaints, frequency and/or intensity of parasomnias) in 58.4% of patients. However, in this systematic review of 24 studies, none of them explored the use of medical hypnosis in sleep-related breathing disorders (8). Hypnosis can be defined as an altered state of consciousness in which a person's attention is detached from their immediate environment and absorbed in inner experiences such as feelings, cognition, and imagery (9). Hypnotic induction involves focusing attention and imaginative involvement to the point where what is imagined seems real. By using and accepting suggestions, the clinician and the patient create a benevolent hypnotic reality with the goal of improving the patient's clinical situation (10). In the literature, there is only one clinical case report describing a benefit of medical hypnosis for CPAP tolerance in a child with cherubism (a rare fibro-osseous genetic disease-causing nasal obstruction). In this case, CPAP therapy using an oral interface was fully accepted after three hypnosis sessions and corrected the obstructive sleep breathing disorder (11). In a slightly different domain, there is a case report of successful use of medical hypnosis as an adjunct therapy for weaning from mechanical ventilation (12). Our hypothesis is that the use of medical hypnosis in CPAP-treated patients could improve the patient's perception of the treatment, making it more positive. Medical hypnosis could occur very early in the management process, with rapid learning of self-hypnosis to actively influence this crucial period for long term adherence of CPAP. The principal objective is therefore to evaluate the effects of medical hypnosis on adherence to CPAP therapy in patients with sleep-disordered breathing.
This research aims to develop a better understanding and clinical knowledge of the effects of a plant based diet on severity and daytime sleepiness in Obstructive Sleep Apnea.
The aim of this observational study is to evaluate the impact of maxillomandibular advancement surgery on the quality of life in patients treated with obstructive sleep apnea. The main question it aims to answer is: Does MMA surgery in OSA patiënts improve their quality of life? Patients will answer online surverys about their QoL and there will be data collected like length, weight and blood pressure.