Acute Lung Injury Clinical Trial
— PRESSUREOfficial title:
Primary Resuscitation Using Airway Pressure Release Ventilation Improves Recovery From Acute Lung Injury or Adult Respiratory Distress Syndrome and Reduces All Cause Mortality Compared to ARDS Net Low Tidal Volume-Cycled Ventilation.
Verified date | November 2020 |
Source | University of Tennessee, Chattanooga |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Traditional modes of ventilation have failed to improve patient survival. Subsequent observations that elevated airway pressures observed in traditional forms of ventilation resulted in barotrauma and extension of ALI lead to the evolution of low volume cycled ventilation as a potentially better ventilatory modality for ARDS. Recent multicenter trials by the NIH-ARDS network have confirmed that low volume ventilation increases the number of ventilatory free days and improves overall patient survival. While reducing mean airway pressure has reduced barotrauma and improved patient survival, it has impaired attempts to improve alveolar recruitment. Alveolar recruitment is important as it improves V/Q mismatch, allows reduction in FIO2 earlier, and decreases the risk of oxygen toxicity. Airway pressure release ventilation (APRV) is a novel ventilatory modality that utilizes controlled positive airway pressure to maximize alveolar recruitment while minimizing barotrauma. In APRV, tidal ventilation occurs between the increase in lung volumes established by the application of CPAP and the relaxation of lung tissue following pressure release. Preliminary studies have suggested that APRV recruits collapsed alveoli and improves oxygenation through a restoration of pulmonary mechanics, but there are no studies indicating the potential overall benefit of APRV in recovery form ALI/ADRS.
Status | Withdrawn |
Enrollment | 0 |
Est. completion date | November 2, 2020 |
Est. primary completion date | November 2, 2020 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 85 Years |
Eligibility | Inclusion Criteria: - All patients admitted to the Internal Medicine service at the Baroness Erlanger Hospital of the University of Tennessee College of Medicine with hypoxia (O2 saturation < 93%) and pulmonary distress, will be screened for study participation. - Patients displaying all the following clinical criteria: acute onset of respiratory failure; hypoxia defined as a PaO2/FiO2 ratio of < 300 Torr; pulmonary capillary wedge pressure less or equal than 18 mm Hg, and/or no clinical evidence of left sided heart failure; and chest x-ray with diffuse bilateral pulmonary infiltrates. Exclusion Criteria: - Patients receiving conventional volume ventilation with or without PEEP for > 6 hours prior to study enrollment - Patient's family or surrogate unwilling to give informed consent - Patients requiring sedation or paralysis for effective ventilation - Patients known pulmonary embolus within 72 hours of study enrollment - Patients with close head injuries or evidence of increased intracranial pressure - Patients with burns over 30% of total body surface area - Pulmonary capillary wedge pressure greater than 18 mm Hg - CVP > 15 cm H2O - Patients with B type Naturetic peptide levels > 1000 - Patients with prior history of dilated cardiomyopathy with EF < 25% - Patients receiving chronic outpatient peritoneal or hemodialysis - Patients with severe liver disease (as defined by Child-Pugh class C) - AIDS patients |
Country | Name | City | State |
---|---|---|---|
United States | James A. Tumlin, MD | Chattanooga | Tennessee |
Lead Sponsor | Collaborator |
---|---|
University of Tennessee, Chattanooga |
United States,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | All cause mortality | 28 days or prior to hospital discharge | ||
Secondary | Number of ventilator-free days | 28 days or prior to hospital discarge | ||
Secondary | Length of ICU stay and /or Total hospital days | 28 days or prior to hospital discharge | ||
Secondary | To determine the effects of APRV ventilation versus ARDS net low volume-cycle ventilation on the incidence of of AKI | 28 days or prior to hospital discharge | ||
Secondary | To determine the effects of APRV ventilation versus ARDS net low volume-cycle ventilation on the NGAL, KIM-1, and IL-18 urine biomarkers for AKI | 28 days or prior to hospital discharge | ||
Secondary | To determine the effects of APRV ventilation versus ARDS net low volume-cycle ventilation in maintaining hourly urine output > 0.5 mls/kg/hr | 28 days or prior to hospital discharge | ||
Secondary | Will determine urinary aquaporin-2 levels in patients randomized to APRV ventilation versus ARDS net low volume-cycle ventilation | 28 days or prior to hospital discharge |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT03937947 -
Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
|
||
Completed |
NCT04247477 -
Comparison of Different PEEP Titration Strategies Using Electrical Impedance Tomography in Patients With ARDS
|
N/A | |
Completed |
NCT03315702 -
Effect of Mechanical Ventilation on Plasma Concentration Level of R-spondin Proteins
|
||
Not yet recruiting |
NCT02693912 -
Changes in Alveolar Macrophage Function During Acute Lung Injury
|
N/A | |
Completed |
NCT01659307 -
The Effect of Aspirin on REducing iNflammation in Human in Vivo Model of Acute Lung Injury
|
Phase 2 | |
Completed |
NCT01552070 -
Recruitment on Extravascular Lung Water in Acute Respiratory Distress Syndrome (ARDS)
|
Phase 2 | |
Unknown status |
NCT01186874 -
Epidemiology Research on Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) in Adult ICU in Shanghai
|
N/A | |
Withdrawn |
NCT00961168 -
Work of Breathing and Mechanical Ventilation in Acute Lung Injury
|
N/A | |
Recruiting |
NCT00759590 -
Comparison of Two Methods to Estimate the Lung Recruitment
|
N/A | |
Completed |
NCT00736892 -
Incidence of Acute Lung Injury: The Alien Study
|
||
Completed |
NCT02475694 -
Acute Lung Injury After Cardiac Surgery: Pathogenesis
|
N/A | |
Completed |
NCT00825357 -
Biological Markers to Identify Early Sepsis and Acute Lung Injury
|
N/A | |
Terminated |
NCT00263146 -
Recruitment Maneuvers in ARDS: Effects on Respiratory Function and Inflammatory Markers.
|
N/A | |
Completed |
NCT00188058 -
Comparison of 2 Strategies of Adjustment of Mechanical Ventilation in Patients With Acute Respiratory Distress Syndrome
|
N/A | |
Completed |
NCT00234767 -
Study of the Economics of Pulmonary Artery Catheter Use in Patients With Acute Respiratory Distress Syndrome (ARDS)
|
Phase 3 | |
Recruiting |
NCT02598648 -
Role and Molecular Mechanism of Farnesoid X Receptor(FXR) and RIPK3 in the Formation of Acute Respiratory Distress Syndrome in Neonates
|
N/A | |
Recruiting |
NCT02948530 -
Measurement of Lung Elastance and Transpulmonary Pressure Using Two Different Methods (Lungbarometry)
|
||
Completed |
NCT01532024 -
Exploratory Clinical Study of Neutrophil Activation Probe (NAP) for Optical Molecular Imaging in Human Lungs
|
Early Phase 1 | |
Recruiting |
NCT01992237 -
Measuring Energy Expenditure in ECMO (Extracorporeal Membrane Oxygenation) Patients
|
N/A | |
Completed |
NCT01486342 -
PET Imaging in Patients at Risk for Acute Lung Injury
|
N/A |