Major Depressive Disorder Clinical Trial
— PDM-TMSOfficial title:
In Vivo Cortical Excitability Modulation in Major Depressive Disorder
NCT number | NCT05441969 |
Other study ID # | PDM-TMS |
Secondary ID | |
Status | Recruiting |
Phase | |
First received | |
Last updated | |
Start date | May 19, 2020 |
Est. completion date | December 31, 2024 |
The pathophysiology of Major Depression Disorder (MDD) is unclear, with several theories for its neurobiological mechanisms. One possible explanation is the presence of altered neuroplasticity, which can be studied by Transcranial Magnetic Stimulation (TMS). Using TMS to study these mechanisms is performed by applying electromagnetic stimuli to the motor cortex, to obtain measures of temporary cortical excitability modulation. It is known that depressed patients with higher cortical modulation are more responsive to a TMS treatment course. However, it is unknown if there are differences in cortical modulation between depressed patients and healthy subjects. Our goal is to answer this question and contribute towards clarification of the neuroplasticity mechanisms underlying MDD. Accordingly, the investigators will access cortical excitability modulation measures in both depressed patients and healthy volunteers and compare their results. The investigators will also re-assess these measures after 6 weeks of antidepressant treatment. Finally, the investigators will study the association between cortical excitability measures and cognitive processes using an innovative cognitive task.
Status | Recruiting |
Enrollment | 90 |
Est. completion date | December 31, 2024 |
Est. primary completion date | December 31, 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion criteria (clinical groups): 1. Diagnosis of major depressive episode or disorder as provided in the Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5) (American Psychiatric Association. 2013). Exclusion criteria (clinical groups): 1. Moderate to severe suicide risk; 2. Known personal history of bipolar disorder or psychotic disorder; 3. Alcohol or other substance abuse and/or dependence; 4. Developmental disorder; 5. Dementia; 6. Presence of uncontrolled active medical illness; 7. Known structural lesion of the central nervous system; 8. Electrical or metallic brain implants; 9. Cardiac implants; 10. Epilepsy; 11. Active use of medication known to cause seizures; 12. Pregnancy; 13. Breastfeeding. For the healthy control group, participants will also be recruited at the Champalimaud Clinical Center, by advertisement in places of public circulation. The recruitment of this population will be done in order to generate a pairing with both clinical groups in terms of age and sex. The same exclusion criteria will be applied, as well as the presence of any history of neuropsychiatric disease. The total number of participants for this study will be approximately 90 volunteers. Exclusion criteria will be assessed through self-report and/or MINI. |
Country | Name | City | State |
---|---|---|---|
Portugal | Champalimaud Foundation | Lisbon |
Lead Sponsor | Collaborator |
---|---|
Fundacao Champalimaud |
Portugal,
Benussi A, Di Lorenzo F, Dell'Era V, Cosseddu M, Alberici A, Caratozzolo S, Cotelli MS, Micheli A, Rozzini L, Depari A, Flammini A, Ponzo V, Martorana A, Caltagirone C, Padovani A, Koch G, Borroni B. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology. 2017 Aug 15;89(7):665-672. doi: 10.1212/WNL.0000000000004232. Epub 2017 Jul 26. — View Citation
Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P, Knyahnytska Y, Kennedy SH, Lam RW, Daskalakis ZJ, Downar J. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet. 2018 Apr 28;391(10131):1683-1692. doi: 10.1016/S0140-6736(18)30295-2. Epub 2018 Apr 26. Erratum In: Lancet. 2018 Jun 23;391(10139):e24. — View Citation
Chang WH, Fried PJ, Saxena S, Jannati A, Gomes-Osman J, Kim YH, Pascual-Leone A. Optimal number of pulses as outcome measures of neuronavigated transcranial magnetic stimulation. Clin Neurophysiol. 2016 Aug;127(8):2892-2897. doi: 10.1016/j.clinph.2016.04.001. Epub 2016 Apr 12. — View Citation
Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2016 Apr;63:43-64. doi: 10.1016/j.neubiorev.2016.01.008. Epub 2016 Feb 3. — View Citation
Cincotta M, Giovannelli F, Borgheresi A, Balestrieri F, Toscani L, Zaccara G, Carducci F, Viggiano MP, Rossi S. Optically tracked neuronavigation increases the stability of hand-held focal coil positioning: evidence from "transcranial" magnetic stimulation-induced electrical field measurements. Brain Stimul. 2010 Apr;3(2):119-23. doi: 10.1016/j.brs.2010.01.001. Epub 2010 Jan 29. — View Citation
Concerto C, Lanza G, Cantone M, Pennisi M, Giordano D, Spampinato C, Ricceri R, Pennisi G, Aguglia E, Bella R. Different patterns of cortical excitability in major depression and vascular depression: a transcranial magnetic stimulation study. BMC Psychiatry. 2013 Nov 9;13:300. doi: 10.1186/1471-244X-13-300. — View Citation
Daskalakis ZJ, Farzan F, Barr MS, Maller JJ, Chen R, Fitzgerald PB. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS-EEG study. Neuropsychopharmacology. 2008 Nov;33(12):2860-9. doi: 10.1038/npp.2008.22. Epub 2008 Mar 5. — View Citation
Fitzgerald, Paul B., and Z. Jeff Daskalakis. Repetitive Transcranial Magnetic Stimulation Treatment for Depressive Disorders: A Practical Guide. Heidelberg: Springer, 2013.
Fried PJ, Jannati A, Davila-Perez P, Pascual-Leone A. Reproducibility of Single-Pulse, Paired-Pulse, and Intermittent Theta-Burst TMS Measures in Healthy Aging, Type-2 Diabetes, and Alzheimer's Disease. Front Aging Neurosci. 2017 Aug 21;9:263. doi: 10.3389/fnagi.2017.00263. eCollection 2017. — View Citation
Goldsworthy MR, Hordacre B, Ridding MC. Minimum number of trials required for within- and between-session reliability of TMS measures of corticospinal excitability. Neuroscience. 2016 Apr 21;320:205-9. doi: 10.1016/j.neuroscience.2016.02.012. Epub 2016 Feb 9. — View Citation
Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005 Jan 20;45(2):201-6. doi: 10.1016/j.neuron.2004.12.033. — View Citation
Huang YZ, Rothwell JC. The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. Clin Neurophysiol. 2004 May;115(5):1069-75. doi: 10.1016/j.clinph.2003.12.026. — View Citation
Jahanshahi M, Ridding MC, Limousin P, Profice P, Fogel W, Dressler D, Fuller R, Brown RG, Brown P, Rothwell JC. Rapid rate transcranial magnetic stimulation--a safety study. Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):422-9. doi: 10.1016/s0924-980x(97)00057-x. — View Citation
Julkunen P, Saisanen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Kononen M. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage. 2009 Feb 1;44(3):790-5. doi: 10.1016/j.neuroimage.2008.09.040. Epub 2008 Oct 11. — View Citation
Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS; National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003 Jun 18;289(23):3095-105. doi: 10.1001/jama.289.23.3095. — View Citation
Kim DR, Epperson N, Pare E, Gonzalez JM, Parry S, Thase ME, Cristancho P, Sammel MD, O'Reardon JP. An open label pilot study of transcranial magnetic stimulation for pregnant women with major depressive disorder. J Womens Health (Larchmt). 2011 Feb;20(2):255-61. doi: 10.1089/jwh.2010.2353. — View Citation
Kupfer DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 2012 Mar 17;379(9820):1045-55. doi: 10.1016/S0140-6736(11)60602-8. Epub 2011 Dec 19. — View Citation
Leykin Y, Roberts CS, Derubeis RJ. Decision-Making and Depressive Symptomatology. Cognit Ther Res. 2011 Aug;35(4):333-341. doi: 10.1007/s10608-010-9308-0. Epub 2010 May 4. — View Citation
Loo CK, McFarquhar TF, Mitchell PB. A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. Int J Neuropsychopharmacol. 2008 Feb;11(1):131-47. doi: 10.1017/S1461145707007717. Epub 2007 Sep 20. — View Citation
Machii K, Cohen D, Ramos-Estebanez C, Pascual-Leone A. Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin Neurophysiol. 2006 Feb;117(2):455-71. doi: 10.1016/j.clinph.2005.10.014. Epub 2006 Jan 4. — View Citation
Maeda F, Keenan JP, Pascual-Leone A. Interhemispheric asymmetry of motor cortical excitability in major depression as measured by transcranial magnetic stimulation. Br J Psychiatry. 2000 Aug;177:169-73. doi: 10.1192/bjp.177.2.169. — View Citation
Oberman L, Edwards D, Eldaief M, Pascual-Leone A. Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. J Clin Neurophysiol. 2011 Feb;28(1):67-74. doi: 10.1097/WNP.0b013e318205135f. — View Citation
Oliveira-Maia AJ, Press D, Pascual-Leone A. Modulation of motor cortex excitability predicts antidepressant response to prefrontal cortex repetitive transcranial magnetic stimulation. Brain Stimul. 2017 Jul-Aug;10(4):787-794. doi: 10.1016/j.brs.2017.03.013. Epub 2017 Mar 31. — View Citation
Player MJ, Taylor JL, Weickert CS, Alonzo A, Sachdev P, Martin D, Mitchell PB, Loo CK. Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology. 2013 Oct;38(11):2101-8. doi: 10.1038/npp.2013.126. Epub 2013 May 16. — View Citation
Radhu, Natasha, Daniel M. Blumberger, and Zafiris J. Daskalakis. "Cortical Inhibition and Excitation in Neuropsychiatric Disorders Using Transcranial Magnetic Stimulation." In Transcranial Direct Current Stimulation in Neuropsychiatric Disorders, edited by André Brunoni, Michael Nitsche, and Colleen Loo, 85-102. Cham: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-33967-2_6.
Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009 Dec;120(12):2008-2039. doi: 10.1016/j.clinph.2009.08.016. Epub 2009 Oct 14. — View Citation
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015 Jun;126(6):1071-1107. doi: 10.1016/j.clinph.2015.02.001. Epub 2015 Feb 10. — View Citation
Schrader LM, Stern JM, Koski L, Nuwer MR, Engel J Jr. Seizure incidence during single- and paired-pulse transcranial magnetic stimulation (TMS) in individuals with epilepsy. Clin Neurophysiol. 2004 Dec;115(12):2728-37. doi: 10.1016/j.clinph.2004.06.018. — View Citation
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59 Suppl 20:22-33;quiz 34-57. — View Citation
Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex. 2009 Oct;45(9):1035-42. doi: 10.1016/j.cortex.2009.02.007. Epub 2009 Mar 3. — View Citation
Vignaud P, Damasceno C, Poulet E, Brunelin J. Impaired Modulation of Corticospinal Excitability in Drug-Free Patients With Major Depressive Disorder: A Theta-Burst Stimulation Study. Front Hum Neurosci. 2019 Feb 26;13:72. doi: 10.3389/fnhum.2019.00072. eCollection 2019. — View Citation
Wainwright SR, Galea LA. The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast. 2013;2013:805497. doi: 10.1155/2013/805497. Epub 2013 Apr 9. — View Citation
Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16. doi: 10.1016/s0168-5597(97)00096-8. — View Citation
* Note: There are 33 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Baseline left cortical excitability modulation | Differences between groups in left cortical excitability modulation at baseline. Left cortical excitability modulation will be computed by assessing motor evoked potentials (MEP) before and after left-sided TMS modulation protocol. | Baseline | |
Secondary | Left cortical excitability modulation changes according to treatment response | Differences between responders and non responders to a new antidepressant treatment of left cortical excitability modulation changes between baseline and after 6 weeks. | Baseline and after ~6 weeks. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05537558 -
Precision Medicine for the Prediction of Treatment (PROMPT) Response (PROMPT)
|
||
Terminated |
NCT02192099 -
Open Label Extension for GLYX13-C-202, NCT01684163
|
Phase 2 | |
Completed |
NCT03142919 -
Lipopolysaccharide (LPS) Challenge in Depression
|
Phase 2 | |
Recruiting |
NCT05547035 -
Identification of Physiological Data by a Wearable Monitor in Subjects Suffering From Major Depression Disorders
|
N/A | |
Terminated |
NCT02940769 -
Neurobiological Effects of Light on MDD
|
N/A | |
Recruiting |
NCT05892744 -
Establishing Multimodal Brain Biomarkers for Treatment Selection in Depression
|
Phase 4 | |
Recruiting |
NCT05537584 -
SMART Trial to Predict Anhedonia Response to Antidepressant Treatment
|
Phase 4 | |
Active, not recruiting |
NCT05061706 -
Multicenter Study of Lumateperone as Adjunctive Therapy in the Treatment of Patients With Major Depressive Disorder
|
Phase 3 | |
Completed |
NCT04479852 -
A Study of the Safety and Efficacy of SP-624 in the Treatment of Adults With Major Depressive Disorder
|
Phase 2 | |
Recruiting |
NCT04032301 -
Repeated Ketamine Infusions for Comorbid PTSD and MDD in Veterans
|
Phase 1 | |
Recruiting |
NCT05527951 -
Enhanced Measurement-Based Care Effectiveness for Depression (EMBED) Study
|
N/A | |
Completed |
NCT03511599 -
Cycloserine rTMS Plasticity Augmentation in Depression
|
Phase 1 | |
Recruiting |
NCT04392947 -
Treatment of Major Depressive Disorder With Bilateral Theta Burst Stimulation
|
N/A | |
Recruiting |
NCT05895747 -
5-HTP and Creatine for Depression R33 Phase
|
Phase 2 | |
Recruiting |
NCT05273996 -
Predictors of Cognitive Outcomes in Geriatric Depression
|
Phase 4 | |
Recruiting |
NCT05813093 -
Interleaved TMS-fMRI in Ultra-treatment Resistant Depression
|
N/A | |
Recruiting |
NCT05135897 -
The Neurobiological Fundaments of Depression and Its Relief Through Neurostimulation Treatments
|
||
Enrolling by invitation |
NCT04509102 -
Psychostimulant Augmentation of Repetitive TMS for the Treatment of Major Depressive Disorder
|
Early Phase 1 | |
Recruiting |
NCT06145594 -
EMA-Guided Maintenance TMS for Depression
|
N/A | |
Recruiting |
NCT06026917 -
Assessing Dopamine Transporter Occupancy in the Patients With Depression Brain With Toludesvenlafaxine Hydrochloride Extended-Release Tablets Using 11C-CFT Positron Emission Tomography (PET)
|
Phase 4 |