Clinical Trials Logo

Clinical Trial Summary

Noninvasive transcranial direct current stimulation (tDCS) is a low-intensity neuromodulation technique of minimal risk that has been used as an experimental procedure for reducing depressive symptoms and symptoms of other brain disorders. Though tDCS applied to prefrontal brain areas is shown to reduce symptoms in some people with major depressive disorder (MDD), the extent of antidepressant response often differs. Methods that map current flow directly in the brain while a person is receiving tDCS and that determine how functional neuroimaging signal changes after a series of tDCS sessions may help us understand how tDCS works, how it can be optimized, and if it can be used as an effective antidepressant. Investigators will address these questions in a two-part randomized double blind exploratory clinical trial. For this part of the study, investigators will determine relationships between target engagement and clinical outcomes (mood) and functional sub-constructs of cognitive control and emotion negativity bias, and whether imaging markers at baseline predict changes in antidepressant response. One hundred people with depression (50 in each group) will be randomized to receive either HD-tDCS or sham-tDCS for a total of 12 sessions each lasting 20 minutes occurring on consecutive weekdays. At the first and last session, subjects will receive 20-30 minutes of active or sham HD-tDCS in the MRI scanner, which will allow investigators to map tDCS currents, and track changes in regional cerebral blood flow (rCBF) pre-to- post treatment using completely non-invasive methods. At the first and last session and mid-way through the trial, participants will also complete a series of clinical ratings and neurocognitive tests.


Clinical Trial Description

Transcranial direct current stimulation (tDCS), a noninvasive neuromodulation technique, applied to the left dorsolateral prefrontal cortex (DLPFC) can reduce depressive symptoms and improve cognitive control in major depressive disorder (MDD). Such findings suggest modulation of top down prefrontal-limbic circuits, which are functionally distinct from ventro-limbic networks and include reciprocally connected DLPFC and dorsomedial anterior cingulate cortex (dACC). However, substantial variation in tDCS response is observed in MDD. This may be due to imprecise stimulation protocols and suboptimal engagement of the neural circuits mediating antidepressant response. Methods that optimize electrode placement and account for individual variation in anatomy and that map current flow directly in the brain may inform the mechanisms and potential clinical utility of tDCS. A new tDCS technique, high definition (HD) tDCS, offers more focal stimulation than conventional tDCS (C-tDCS). The degree to which C-tDCS or HD-tDCS engage dorsal prefrontal-limbic neural circuits is unknown, yet is vital for understanding, confirming and subsequently improving possible therapeutic effects. Innovative MRI techniques that are able to map tDCS currents in vivo and that track changes in regional cerebral blood flow occurring with tDCS over time can provide direct evidence of neural effects. Based on a) theoretical modeling of tDCS current flow, b) studies showing hypo-metabolism, decreased CBF or activity in dorsal prefrontal-limbic networks, c) modulation of these regions with treatment, and, c) our prior results showing significant relationships in between change in dACC rCBF and clinical response to electroconvulsive therapy (ECT), an established brain stimulation treatment, we will test for the tDCS engagement and modulation of the DLPFC and dACC using tDCS current mapping performed in vivo and perfusion MRI. MRI-guided neuronavigation will be used to optimize and standardize electrode placement for DLPFC stimulation. In this trial, using HD-tDCS that optimal target engagement of DLPFC and larger rCBF changes in the DLPFC and dACC compared to C-tDCS in the first part of the trial, we will define relationships between target engagement and change in mood and behavior. Patients with moderate to severe MDD (N=100, n=50 in each group) will be randomized to Active or Sham left anodal DLPFC HD-tDCS. Patients will complete MRI scans including tDCS current mapping and pCASL as well as two functional imaging tasks probing cognitive control and emotion negativity bias, recruiting prefrontal-limbic circuitry, before and after completing a 12-day trial of 20-minute tDCS sessions. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04507243
Study type Interventional
Source University of California, Los Angeles
Contact
Status Completed
Phase N/A
Start date December 1, 2020
Completion date March 7, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05537558 - Precision Medicine for the Prediction of Treatment (PROMPT) Response (PROMPT)
Terminated NCT02192099 - Open Label Extension for GLYX13-C-202, NCT01684163 Phase 2
Completed NCT03142919 - Lipopolysaccharide (LPS) Challenge in Depression Phase 2
Recruiting NCT05547035 - Identification of Physiological Data by a Wearable Monitor in Subjects Suffering From Major Depression Disorders N/A
Terminated NCT02940769 - Neurobiological Effects of Light on MDD N/A
Recruiting NCT05892744 - Establishing Multimodal Brain Biomarkers for Treatment Selection in Depression Phase 4
Recruiting NCT05537584 - SMART Trial to Predict Anhedonia Response to Antidepressant Treatment Phase 4
Active, not recruiting NCT05061706 - Multicenter Study of Lumateperone as Adjunctive Therapy in the Treatment of Patients With Major Depressive Disorder Phase 3
Completed NCT04479852 - A Study of the Safety and Efficacy of SP-624 in the Treatment of Adults With Major Depressive Disorder Phase 2
Recruiting NCT04032301 - Repeated Ketamine Infusions for Comorbid PTSD and MDD in Veterans Phase 1
Recruiting NCT05527951 - Enhanced Measurement-Based Care Effectiveness for Depression (EMBED) Study N/A
Completed NCT03511599 - Cycloserine rTMS Plasticity Augmentation in Depression Phase 1
Recruiting NCT04392947 - Treatment of Major Depressive Disorder With Bilateral Theta Burst Stimulation N/A
Recruiting NCT05895747 - 5-HTP and Creatine for Depression R33 Phase Phase 2
Recruiting NCT05273996 - Predictors of Cognitive Outcomes in Geriatric Depression Phase 4
Recruiting NCT05813093 - Interleaved TMS-fMRI in Ultra-treatment Resistant Depression N/A
Recruiting NCT05135897 - The Neurobiological Fundaments of Depression and Its Relief Through Neurostimulation Treatments
Enrolling by invitation NCT04509102 - Psychostimulant Augmentation of Repetitive TMS for the Treatment of Major Depressive Disorder Early Phase 1
Recruiting NCT06145594 - EMA-Guided Maintenance TMS for Depression N/A
Recruiting NCT06026917 - Assessing Dopamine Transporter Occupancy in the Patients With Depression Brain With Toludesvenlafaxine Hydrochloride Extended-Release Tablets Using 11C-CFT Positron Emission Tomography (PET) Phase 4