Clinical Trials Logo

Clinical Trial Details — Status: Active, not recruiting

Administrative data

NCT number NCT05752019
Other study ID # V2.1, 12-08-2022
Secondary ID MEC-2021-0907
Status Active, not recruiting
Phase
First received
Last updated
Start date March 21, 2022
Est. completion date December 31, 2023

Study information

Verified date September 2023
Source Erasmus Medical Center
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Progressive destruction of the lungs is the main cause of shortened life expectancy in people with cystic fibrosis (pwCF). Inflammation and respiratory infections play a key role in CF lung disease. Previous studies have shown that an increase in inflammatory markers predicts structural lung damage. Close monitoring of pwCF is crucial to adequately provide optimal care. Pulmonary management for pwCF involves treating infections and exacerbations and promoting exercise and mucociliary clearance to slow or prevent structural lung damage. To evaluate the treatment and incite timely interventions it is important for the pulmonary physician to be well-informed about the condition of the lungs. The main monitoring tools in regular CF care are lung function, sputum cultures, symptom reporting and more recently imaging by chest computed tomography (CT-scan) or magnetic resonance imaging (MRI). Strangely enough, there are currently no monitoring tools used in clinics to measure inflammation in the lung, although this is a main factor for progressive lung disease. New highly effective modulator therapy (HEMT) such as elexacaftor/tezacaftor/ivacaftor [ETI, Kaftrio®] is transforming CF treatment, vastly improving lung function and reducing exacerbations. Initial CFTR modulators like ivacaftor and lumacaftor/ivacaftor also improved lung function and reduced exacerbations, but studies showed that lung inflammation was still present. The long-term impact of ETI and its effect on inflammation is not yet known. Thus, monitoring pwCF on HEMT may be different from before, as lung damage seen on chest CT will be less apparent and lung function will improve considerably, therefore not being adequate markers for subtle changes in the lungs. Thus, the focus of monitoring in the era of highly effective CFTR modulators needs to change preferably focusing on measuring lung inflammation. An ideal monitoring tool for lung inflammation in pwCF should be non-invasive, efficient, and provide accurate and sensitive results. Currently, sputum and BAL are the most common methods for assessing inflammation, but BAL is invasive and sputum may not always be available. Exhaled breath analysis by the electronic nose (eNose) or gas chromatography-mass spectrometry (GC-MS) of volatile organic compounds (VOCs) shows promise as a non-invasive monitoring tool. Other promising markers and techniques are inflammatory markers in the blood (cytokines and micro-RNA (miRNA)) and urine. Thus, the objective of this project is to design novel, minimally invasive monitoring techniques capable of identifying lung inflammation in pwCF undergoing highly effective CFTR modulator therapy (ETI) compared to those not using CFTR modulators. The efficacy of these innovative techniques will be evaluated and verified against inflammatory markers in sputum, spirometry, and validated symptom and quality of life scores.


Description:

Objective: The overall aim of the study is to develop innovative minimally invasive monitoring techniques that can identify lung inflammation in pwCF when using highly effective modulators, compared to patients whom are not eligible for CFTR modulators (control group) yet. Primary objective is to assess whether measuring VOCs with GC-MS is a sensitive method to monitor changes in lung inflammation in pwCF. Secondary objectives are: - To assess whether eNose is a sensitive method to monitor changes in lung inflammation in pwCF. - To explore the usefulness of other inflammatory markers in blood and urine. Study design: Explorative cohort study aimed to develop innovative minimally invasive monitoring techniques that can identify lung inflammation in pwCF when using highly effective CFTR modulators. (eNose, GC-MS, inflammatory markers in urine and blood), compared to a control group: pwCF not using CFTR modulators. Furthermore, the investigators will compare these techniques with inflammatory markers in induced sputum, conventional spirometry, symptom and quality of life scores. Study population: pwCF older than 6 years of age who are eligible to start on ETI treatment and as a control group pwCF who are not on CFTR modulators, Intervention: Subjects will be included till at least 3 study visits have taken place during treatment with ETI or for the control group: 3 consecutive regular outpatient clinic visits, which are usually 3 months apart. If the subject has not started with ETI an extra visit at baseline will be added just before start of ETI. At the study visits routine care checks will be done, such as spirometry and blood sampling for liver enzyme monitoring. The extra investigations performed at these study visits are: exhaled breath sampling, 3 extra vials of blood, urine collection, induced sputum. Lung clearance index (LCI) will be done for subjects below 18 years of age. Subjects may opt out for blood, induced sputum and urine samples, there always need to be an exhaled breath sampling with eNose and GC-MS. If the patient has a contra-indication or does not want to participate in the induced sputum procedure, the investigators will attempt to collect spontaneous expectorated sputum instead. To limit their burden of the study for the age group 6-11, the investigators will not conduct all measurements in that age group. Resulting, in the following difference in study design between two age groups: Patients >12 years: At all visits there will be exhaled breath sampling, 3 extra vials of blood with a blooddraw, induced sputum, urine sample and 2 questionnaires (QoL and symptom score). Patients <12 years: At all visits there will be exhaled breath sampling and 1 questionnaire (symptom score) will be done by doing an interview with the child. On the last visit 2 extra vials of blood will be collected. For patients 6-18 years of age a multiple breath washout (MBW) for LCI will be scheduled at study visits. Main study parameters/endpoints: Primary endpoint is the comparison of VOCs, measured by GC-MS, during ETI treatment compared to control group over time during 3 different study visits. Secondary endpoints entail the correlation of VOCs by GC-MS breath profiles/VOCs, measured by eNose, inflammatory markers in induced sputum (IL-8, free neutrophilic elastase (NE), calprotectin and myeloperoxidase, plus a predetermined cytokine panel), blood (IL-18, IL-1β, TNF, hsCRP, sCD14, calprotectin, HGMB-1, amyloid and miRNA), urine and, lung function, quality of life and symptom scores at baseline (if available) and overtime during 3 consecutive study visits. In addition, the change of VOCs by GC-MS and eNose from baseline till 3 months of ETI treatment will be investigated.


Recruitment information / eligibility

Status Active, not recruiting
Enrollment 100
Est. completion date December 31, 2023
Est. primary completion date December 31, 2023
Accepts healthy volunteers No
Gender All
Age group 6 Years and older
Eligibility Inclusion Criteria: In order to be eligible to participate in this study, a subject must meet all of the following criteria: Diagnosed with CF, either by abnormal sweat test and/or confirmed with 2 CF causing mutations found by genetic analysis, either from heel-prick screening or diagnosed later in life. Aged >6 years (i.e. children and adults). Age appropriate written informed consent is required. In addition, patients need to meet the criteria of one of the following study groups: Group 1: Treated group : people with CF with mutations who are eligible to start ETI or who are already using it. This maybe patients who transition from another CFTR modulator or who are CFTR modulator naïve. Group 2: Control group: people with CF whom are not eligible to start on any CFTR modulator yet and receive standard treatment. This group will function as controls. Exclusion Criteria: - People with CF who cannot follow instructions

Study Design


Locations

Country Name City State
Netherlands Erasmus MC - Sophia Children's Hospital Rotterdam Zuid-Holland

Sponsors (2)

Lead Sponsor Collaborator
Erasmus Medical Center Stichting TAAI

Country where clinical trial is conducted

Netherlands, 

References & Publications (26)

Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem. 2011 Apr 1;286(13):11604-15. doi: 10.1074/jbc.M110.198390. Epub 2011 Jan 31. — View Citation

Bruce MC, Poncz L, Klinger JD, Stern RC, Tomashefski JF Jr, Dearborn DG. Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis. 1985 Sep;132(3):529-35. doi: 10.1164/arrd.1985.132.3.529. — View Citation

De Boeck K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020 May;109(5):893-899. doi: 10.1111/apa.15155. Epub 2020 Jan 22. — View Citation

de Vries R, Dagelet YWF, Spoor P, Snoey E, Jak PMC, Brinkman P, Dijkers E, Bootsma SK, Elskamp F, de Jongh FHC, Haarman EG, In 't Veen JCCM, Maitland-van der Zee AH, Sterk PJ. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur Respir J. 2018 Jan 11;51(1):1701817. doi: 10.1183/13993003.01817-2017. Print 2018 Jan. — View Citation

Fens N, van der Schee MP, Brinkman P, Sterk PJ. Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions. Clin Exp Allergy. 2013 Jul;43(7):705-15. doi: 10.1111/cea.12052. — View Citation

Gold LS, Patrick DL, Hansen RN, Goss CH, Kessler L. Correspondence between lung function and symptom measures from the Cystic Fibrosis Respiratory Symptom Diary-Chronic Respiratory Infection Symptom Score (CFRSD-CRISS). J Cyst Fibros. 2019 Nov;18(6):886-893. doi: 10.1016/j.jcf.2019.05.009. Epub 2019 May 22. — View Citation

Heijerman HGM, McKone EF, Downey DG, Van Braeckel E, Rowe SM, Tullis E, Mall MA, Welter JJ, Ramsey BW, McKee CM, Marigowda G, Moskowitz SM, Waltz D, Sosnay PR, Simard C, Ahluwalia N, Xuan F, Zhang Y, Taylor-Cousar JL, McCoy KS; VX17-445-103 Trial Group. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019 Nov 23;394(10212):1940-1948. doi: 10.1016/S0140-6736(19)32597-8. Epub 2019 Oct 31. Erratum In: Lancet. 2020 May 30;395(10238):1694. — View Citation

Horati H, Janssens HM, Margaroli C, Veltman M, Stolarczyk M, Kilgore MB, Chou J, Peng L, Tiddens HAMW, Chandler JD, Tirouvanziam R, Scholte BJ. Airway profile of bioactive lipids predicts early progression of lung disease in cystic fibrosis. J Cyst Fibros. 2020 Nov;19(6):902-909. doi: 10.1016/j.jcf.2020.01.010. Epub 2020 Feb 10. — View Citation

Jain R, Baines A, Khan U, Wagner BD, Sagel SD. Evaluation of airway and circulating inflammatory biomarkers for cystic fibrosis drug development. J Cyst Fibros. 2021 Jan;20(1):50-56. doi: 10.1016/j.jcf.2020.06.017. Epub 2020 Jul 1. — View Citation

Jarosz-Griffiths HH, Scambler T, Wong CH, Lara-Reyna S, Holbrook J, Martinon F, Savic S, Whitaker P, Etherington C, Spoletini G, Clifton I, Mehta A, McDermott MF, Peckham D. Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. Elife. 2020 Mar 2;9:e54556. doi: 10.7554/eLife.54556. — View Citation

Krause K, Kopp BT, Tazi MF, Caution K, Hamilton K, Badr A, Shrestha C, Tumin D, Hayes D Jr, Robledo-Avila F, Hall-Stoodley L, Klamer BG, Zhang X, Partida-Sanchez S, Parinandi NL, Kirkby SE, Dakhlallah D, McCoy KS, Cormet-Boyaka E, Amer AO. The expression of Mirc1/Mir17-92 cluster in sputum samples correlates with pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros. 2018 Jul;17(4):454-461. doi: 10.1016/j.jcf.2017.11.005. Epub 2017 Dec 11. — View Citation

Laguna TA, Wagner BD, Starcher B, Luckey Tarro HK, Mann SA, Sagel SD, Accurso FJ. Urinary desmosine: a biomarker of structural lung injury during CF pulmonary exacerbation. Pediatr Pulmonol. 2012 Sep;47(9):856-63. doi: 10.1002/ppul.22525. Epub 2012 Mar 19. — View Citation

Laguna TA, Williams CB, Nunez MG, Welchlin-Bradford C, Moen CE, Reilly CS, Wendt CH. Biomarkers of inflammation in infants with cystic fibrosis. Respir Res. 2018 Jan 8;19(1):6. doi: 10.1186/s12931-017-0713-8. — View Citation

Margaroli C, Garratt LW, Horati H, Dittrich AS, Rosenow T, Montgomery ST, Frey DL, Brown MR, Schultz C, Guglani L, Kicic A, Peng L, Scholte BJ, Mall MA, Janssens HM, Stick SM, Tirouvanziam R. Elastase Exocytosis by Airway Neutrophils Is Associated with Early Lung Damage in Children with Cystic Fibrosis. Am J Respir Crit Care Med. 2019 Apr 1;199(7):873-881. doi: 10.1164/rccm.201803-0442OC. — View Citation

Martin SL, Moffitt KL, McDowell A, Greenan C, Bright-Thomas RJ, Jones AM, Webb AK, Elborn JS. Association of airway cathepsin B and S with inflammation in cystic fibrosis. Pediatr Pulmonol. 2010 Sep;45(9):860-8. doi: 10.1002/ppul.21274. — View Citation

Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF, Polineni D, Ramsey BW, Taylor-Cousar JL, Tullis E, Vermeulen F, Marigowda G, McKee CM, Moskowitz SM, Nair N, Savage J, Simard C, Tian S, Waltz D, Xuan F, Rowe SM, Jain R; VX17-445-102 Study Group. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med. 2019 Nov 7;381(19):1809-1819. doi: 10.1056/NEJMoa1908639. Epub 2019 Oct 31. — View Citation

Neerincx AH, Whiteson K, Phan JL, Brinkman P, Abdel-Aziz MI, Weersink EJM, Altenburg J, Majoor CJ, Maitland-van der Zee AH, Bos LDJ. Lumacaftor/ivacaftor changes the lung microbiome and metabolome in cystic fibrosis patients. ERJ Open Res. 2021 Apr 19;7(2):00731-2020. doi: 10.1183/23120541.00731-2020. eCollection 2021 Apr. — View Citation

Quittner AL, Modi AC, Wainwright C, Otto K, Kirihara J, Montgomery AB. Determination of the minimal clinically important difference scores for the Cystic Fibrosis Questionnaire-Revised respiratory symptom scale in two populations of patients with cystic fibrosis and chronic Pseudomonas aeruginosa airway infection. Chest. 2009 Jun;135(6):1610-1618. doi: 10.1378/chest.08-1190. Epub 2009 May 15. — View Citation

Quon BS, Ngan DA, Wilcox PG, Man SF, Sin DD. Plasma sCD14 as a biomarker to predict pulmonary exacerbations in cystic fibrosis. PLoS One. 2014 Feb 20;9(2):e89341. doi: 10.1371/journal.pone.0089341. eCollection 2014. — View Citation

Sagel SD, Kapsner RK, Osberg I. Induced sputum matrix metalloproteinase-9 correlates with lung function and airway inflammation in children with cystic fibrosis. Pediatr Pulmonol. 2005 Mar;39(3):224-32. doi: 10.1002/ppul.20165. — View Citation

Sampson AP, Spencer DA, Green CP, Piper PJ, Price JF. Leukotrienes in the sputum and urine of cystic fibrosis children. Br J Clin Pharmacol. 1990 Dec;30(6):861-9. doi: 10.1111/j.1365-2125.1990.tb05452.x. — View Citation

Sly PD, Gangell CL, Chen L, Ware RS, Ranganathan S, Mott LS, Murray CP, Stick SM; AREST CF Investigators. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med. 2013 May 23;368(21):1963-70. doi: 10.1056/NEJMoa1301725. — View Citation

Smyth AR, Bell SC, Bojcin S, Bryon M, Duff A, Flume P, Kashirskaya N, Munck A, Ratjen F, Schwarzenberg SJ, Sermet-Gaudelus I, Southern KW, Taccetti G, Ullrich G, Wolfe S; European Cystic Fibrosis Society. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros. 2014 May;13 Suppl 1:S23-42. doi: 10.1016/j.jcf.2014.03.010. — View Citation

Stachowiak Z, Wojsyk-Banaszak I, Jonczyk-Potoczna K, Narozna B, Langwinski W, Kycler Z, Sobkowiak P, Breborowicz A, Szczepankiewicz A. MiRNA Expression Profile in the Airways is Altered during Pulmonary Exacerbation in Children with Cystic Fibrosis-A Preliminary Report. J Clin Med. 2020 Jun 16;9(6):1887. doi: 10.3390/jcm9061887. — View Citation

Thomassen JC, Trojan T, Walz M, Vohlen C, Fink G, Rietschel E, Alejandre Alcazar MA, van Koningsbruggen-Rietschel S. Reduced neutrophil elastase inhibitor elafin and elevated transforming growth factor-beta1 are linked to inflammatory response in sputum of cystic fibrosis patients with Pseudomonas aeruginosa. ERJ Open Res. 2021 Jul 19;7(3):00636-2020. doi: 10.1183/23120541.00636-2020. eCollection 2021 Jul. — View Citation

Wijker NE, Vidmar S, Grimwood K, Sly PD, Byrnes CA, Carlin JB, Cooper PJ, Robertson CF, Massie RJ, Kemner van de Corput MPC, Cheney J, Tiddens HAWM, Wainwright CE; Australasian Cystic Fibrosis Bronchoalveolar Lavage (ACFBAL) and Follow-up of the ACFBAL (CF-FAB) study groups; following investigators constitute the ACFBAL Study Investigators Group:; following investigators constitute the CF FAB Study Investigators Group:; Additional contributions: We are indebted to all current and former clinical and research staff from Queensland Children's Hospital, Brisbane:. Early markers of cystic fibrosis structural lung disease: follow-up of the ACFBAL cohort. Eur Respir J. 2020 Apr 3;55(4):1901694. doi: 10.1183/13993003.01694-2019. Print 2020 Apr. — View Citation

* Note: There are 26 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Correlation of the peak intensities of Volatile Organic Compounds, measured by GC-MS and eNose, with inflammatory markers in sputum, like IL-8. Correlation of Volatile Organic Compounds (VOCs), measured by GC-MS and eNose breath profiles/VOCs, with inflammatory markers in induced sputum (IL-8, free neutrophilic elastase (NE), calprotectin and myeloperoxidase, plus a predetermined cytokine panel). Volatile organic compounds are measured by gas chromatography - mass spectrometry (GC-MS) and eNose. With the GC-MS, Compounds in breath will be identified according to their retention time and m/z ratio. Difference between peak intensities of compounds will be assessed between groups. An untargeted analysis approach will be used to identify compounds that have the most discriminative ability between the defined groups.
The sensors in the eNose will change their electric output when a participant breathes through the machine. The change in signal per sensor will be used to correlate with inflammatory markers in sputum and to identify clusters with higher and lower lung inflammation profile.
Study completion will take an average of 1 year.
Secondary Correlation of VOCs, measured by GC-MS and eNose, with validated questionnaires Correlation of VOCs by GC-MS and eNose breath profiles/VOCs with validated questionnaires (CFRSD-CRISS & CFQ-R). CFRSD-CRISS is symptom score questionnaire and the CFQ-R a quality of life questionnaire. Both questionnaires result in certain scores, which will be used for the analysis and validation of the breath analyzing techniques. Volatile organic compounds are analyzed with GC-MS and eNose as described at the primary outcome. Study completion will take an average of 1 year.
Secondary Correlation of potential biomarkers in blood and urine with inflammatory markers in sputum, VOCs in Exhaled Breath and validated questionnaires. The targeted biomarkers are listed in the study description. Study completion will take an average of 1 year.
Secondary Change in volatile organic compounds (VOCs), measured by GC-MS, during ETI treatment compared to control group over time. Volatile organic compounds are measured by gas chromatography - mass spectrometry. Compounds in breath will be identified according to their retention time and m/z ratio. Difference between peak intensities of compounds will be assessed between groups. A untargeted analysis approach will be used to identify compounds that have the most discriminative ability between the defined groups. Study completion will take an average of 1 year.
See also
  Status Clinical Trial Phase
Completed NCT04696198 - Thoracic Mobility in Cystic Fibrosis Care N/A
Completed NCT00803205 - Study of Ataluren (PTC124™) in Cystic Fibrosis Phase 3
Terminated NCT04921332 - Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD N/A
Completed NCT03601637 - Safety and Pharmacokinetic Study of Lumacaftor/Ivacaftor in Participants 1 to Less Than 2 Years of Age With Cystic Fibrosis, Homozygous for F508del Phase 3
Terminated NCT02769637 - Effect of Acid Blockade on Microbiota and Inflammation in Cystic Fibrosis (CF)
Recruiting NCT06030206 - Lung Transplant READY CF 2: A Multi-site RCT N/A
Recruiting NCT06012084 - The Development and Evaluation of iCF-PWR for Healthy Siblings of Individuals With Cystic Fibrosis N/A
Recruiting NCT06032273 - Lung Transplant READY CF 2: CARING CF Ancillary RCT N/A
Recruiting NCT05392855 - Symptom Based Performance of Airway Clearance After Starting Highly Effective Modulators for Cystic Fibrosis (SPACE-CF) N/A
Recruiting NCT06088485 - The Effect of Bone Mineral Density in Patients With Adult Cystic Fibrosis
Recruiting NCT04039087 - Sildenafil Exercise: Role of PDE5 Inhibition Phase 2/Phase 3
Recruiting NCT04056702 - Impact of Triple Combination CFTR Therapy on Sinus Disease.
Completed NCT04058548 - Clinical Utility of the 1-minute Sit to Stand Test as a Measure of Submaximal Exercise Tolerance in Patients With Cystic Fibrosis During Acute Pulmonary Exacerbation N/A
Completed NCT04038710 - Clinical Outcomes of Triple Combination Therapy in Severe Cystic Fibrosis Disease.
Completed NCT03637504 - Feasibility of a Mobile Medication Plan Application in CF Patient Care N/A
Recruiting NCT03506061 - Trikafta in Cystic Fibrosis Patients Phase 2
Completed NCT03566550 - Gut Imaging for Function & Transit in Cystic Fibrosis Study 1
Recruiting NCT04828382 - Prospective Study of Pregnancy in Women With Cystic Fibrosis
Completed NCT04568980 - Assessment of Contraceptive Safety and Effectiveness in Cystic Fibrosis
Recruiting NCT04010253 - Impact of Bronchial Drainage Technique by the Medical Device Simeox® on Respiratory Function and Symptoms in Adult Patients With Cystic Fibrosis N/A