View clinical trials related to Ventilator-Induced Lung Injury.
Filter by:The purpose of the study is to assess whether lung ultrasound is able to detect lung injury after lung resection surgery.
Acute respiratory distress syndrome (ARDS) is a form of acute lung injury of inflammatory origin, which represents a public health problem worldwide due to its prevalence, and its high mortality rate, close to 40%. Mechanical ventilation is a fundamental therapy to improve gas exchange, however, it can also induce further lung injury, a phenomenon known as ventilator induced lung injury (VILI). The limitation of tidal volume is the strategy that has shown the greatest decrease in mortality and is the cornerstone of protective ventilation. However, the respiratory rate, a fundamental parameter in the programming of the mechanical ventilator, has not been evaluated in most of the main clinical studies to date. Moreover, the natural clinical response to the use of a low tidal volume strategy is the increase in respiratory rate, which may harm the lung as it increases the energy applied to the lung parenchyma. The investigators hypothesize that the use of a lower respiratory rate, tolerating moderate hypercapnia, is associated with less VILI, measured by the release of proinflammatory mediators at the systemic level (biotrauma), compared to a conventional higher respiratory rate strategy in patients with moderate to severe ARDS. This effect is mediated by lower energy applied to the pulmonary parenchyma. To confirm this hypothesis the investigators propose a prospective cross-over clinical trial in 30 adult patients with ARDS in its acute phase, which will be randomized to two sequences of ventilation. Each period will last 12 hours, and respiratory rate (RR) will be set according to PaCO2 goal: 1) Low RR, PaCO2 60-70 mmHg; and 2) High RR, PaCO2 35-40 mmHg. Protective ventilation will be applied according to ICU standards under continuous sedation and neuromuscular blockade. Invasive systemic arterial pressure and extravascular lung water will be monitored through an arterial catheter (PICCO® system), and airway and esophageal pressures and hemodynamics continuously measured throughout the protocol. The main outcome will be Interleukin-6 in plasma. At baseline and at the end of each period blood samples will be taken for analysis, and electrical impedance tomography (EIT) and transthoracic echocardiography will be registered. After the protocol, patients will continue their management according to ICU standards.
Intraoperative lung protective ventilatory strategy has been widely recognized to reduce postoperative pulmonary complications in laparotomy and laparoscopic surgeries. However, the clinical evidence and consensus for ventilatory strategy to protect the dependent lung segments during thoracic surgery that requires one-lung ventilation (OLV) is currently not available. Since lung compliance changes significantly during OLV, the levels of respiratory mechanics should be optimized to avoid barotrauma and volutrauma. This study aims to determine the optimal levels of volume-pressure dynamics during OLV and at the phase of recruitment of the independent lungs by achieving optimal lung compliance, gas exchange and hemodynamics.
Little is known about how lung mechanics are affected during the very early phase after starting mechanical ventilation. Since the conventional method of measuring esophageal pressure is complicated, hard to interpret and expensive, there are no studies on lung mechanics on intensive care patients directly after intubation, during the first hours of ventilator treatment and forward until the ventilator treatment is withdrawn. Published studies have collected data using the standard methods from day 1 to 3 of ventilator treatment for respiratory system mechanics, i.e. the combined mechanics of lung and chest wall. Consequently, information on lung mechanical properties during the first critical hours of ventilator treatment is missing and individualization of ventilator care done on the basis of respiratory system mechanics, which are not representative of lung mechanics on an individual patient basis. We have developed a PEEP-step method based on a change of PEEP up and down in one or two steps, where the change in end-expiratory lung volume ΔEELV) is determined and lung compliance calculated as ΔEELV divided by ΔPEEP (CL = ΔEELV/ΔPEEP). This simple non-invasive method for separating lung and chest wall mechanics provides an opportunity to enhance the knowledge of lung compliance and the transpulmonary pressure. After the two-PEEP-step procedure, the PEEP level where transpulmonary driving pressure is lowest can be calculated for any chosen tidal volume. The aim of the present study in the ICU is to survey lung mechanics from start of mechanical ventilation until extubation and to determine PEEP level with lowest (least injurious) transpulmonary driving pressure during ventilator treatment. The aim of the study during anesthesia in the OR, is to survey lung mechanics in lung healthy and identify patients with lung conditions before anesthesia, which may have an increased risk of postoperative complications.
This study is a randomized prospective, single-center feasibility study of the use and benefits of NeuRx DPS in patients undergoing tracheostomy for failure to wean.
The concept of Ventilator-induced Lung Injury Vortex (VILI vortex) has recently been proposed as a progressive lung injury mechanism in which the alveolar stress/strain increases as the ventilable lung "shrinks" (1). This positive feedback inexorably leads to the acceleration of lung damage, with potentially irreversible results. Little is known about the clinical aspects of this condition. Understanding its behavior could contribute to changing its potential devastating impact. The objective of this study is to evaluate the incidence of VILI vortex in patients with acute respiratory syndrome (ARDS) secondary to COVID-19, to establish a connection between this phenomenon and mortality, and to identify the factors that have an impact on its development.
Although most of the information focuses on understanding how the ventilator produces lung damage, the pulmonary factors that predispose to ventilator-induced lung injury (VILI) have been less studied. Acute respiratory distress syndrome (ARDS) can adopt different morphological phenotypes, with its own clinical and mechanical characteristics. This morphological phenotypes may favor the development of VILI for same ventilatory strategy
Previous clinical trials in adults with acute respiratory distress syndrome (ARDS) have demonstrated that ventilator management choices can improve Intensive Care Unit (ICU) mortality and shorten time on mechanical ventilation. This study seeks to scale an established Clinical Decision Support (CDS) tool to facilitate dissemination and implementation of evidence-based research in mechanical ventilation of infants and children with pediatric ARDS (PARDS). This will be accomplished by using CDS tools developed and deployed in Children's Hospital Los Angeles (CHLA) which are based on the best available pediatric evidence, and are currently being used in an NHLBI funded single center randomized controlled trial (NCT03266016, PI: Khemani). Without CDS, there is significant variability in ventilator management of PARDS patients both between and within Pediatric ICUs (PICUs), but clinicians are willing to accept CDS recommendations. The CDS tool will be deployed in multiple PICUs, targeting enrollment of up to 180 children with PARDS. Study hypotheses: 1. The CDS tool in will be implementable in nearly all participating sites 2. There will be > 80% compliance with CDS recommendations and 3. The investigators can implement automatic data capture and entry in many of the ICUs Once feasibility of this CDS tool is demonstrated, a multi-center validation study will be designed, which seeks to determine whether the CDS can result in a significant reduction in length of mechanical ventilation (LMV).
Ventilator-induced lung injury is a common complication. The latest and most noticeable theory of its pathogenesis is called 'ergotrauma' by Gattinoni in 2016. The theory uses ventilator-imposed 'energy' or 'power' to encompass several known forms of injury-inducing factors such as pressure,volume, flow, rate, etc. However, to quantify power imposed by ventilator is no easy task in clinical practice. So, Gattinoni proposed a mathematical formula for easy power calculation. However, Gattinoni did not compare the difference between various etiologies of acute lung injury. We will enroll 100 patients (50 with acute respiratory distress syndrome and 50 with normal lung). The ventilator-imposed power at various tidal volume (6, 8, 10 ml/Kg) and positive end-expiratory pressure (5, 10 cmH2O) will be calculated by the formula. The area enclosed by hysteresis of pressure-volume curve, and hence the work it implies, will be measured as a standard. Our study will aim to compare the formula in different patient groups and in Taiwanese people.
The aim of this questionnaire-based survey is to evaluate the routine use of individual positive end-expiratory pressure (PEEP) and regular alveolar recruitment manoeuvres (ARM) of Central and Eastern European anaesthesiologists during general anaesthesia.