Clinical Trials Logo

Ventilator-Induced Lung Injury clinical trials

View clinical trials related to Ventilator-Induced Lung Injury.

Filter by:

NCT ID: NCT06367946 Recruiting - Clinical trials for Ventilator-Induced Lung Injury

Mechanism Study of Ventilator-Induced Lung Injury in Elderly People.

Start date: June 1, 2023
Phase:
Study type: Observational

1. We collect lung tissues from patients with different ages and confirm that KLK8 expression is positively correlated with age. 2. We collect peripheral blood from patients with different ages and duration of mechanical ventilation to explore the correlation between the degree of endothelial/epithelial damage, age and duration of mechanical ventilation.

NCT ID: NCT06334523 Not yet recruiting - Clinical trials for Ventilator-Induced Lung Injury

Ventilation of the Extremely Premature Infants Optimized by Dead Space Washout

Volem
Start date: May 1, 2024
Phase: Phase 2
Study type: Interventional

The Continuous Tracheal Gas Insufflation (CTGI) is a ventilation option of conventional ventilation to reduce or even cancel dead space due to respiratory prostheses. This objective is particularly interesting in the smallest preterm infants in which the volume of anatomical dead space due to prostheses is little different from the tidal volume. The principle of this option is to continuously blow an additional flow of 0.2 L/min at tip of endotracheal tube to purge expired CO2 trapped in the prostheses to have a CO2-free volume of gas available for subsequent insufflation.

NCT ID: NCT06321497 Recruiting - ARDS, Human Clinical Trials

Extracorporeal Carbon Dioxide Removal Using PrismaLung in Reducing Ventilator Induced Lung Injury

Start date: February 5, 2024
Phase:
Study type: Observational

Lung protective ventilation with low tidal volumes and low driving pressure are known to reduce mortality in mechanically ventilated patients with acute respiratory failure. This reduction in mortality is known be due to reduction of ventilator induced lung injury that occurs due to high tidal volumes and high driving pressure. When receiving such mechanical ventilation, some patients develop hypercapnia and associated hypercapnic acidosis. Such patients have an increased risk of mortality. While the exact reasons for such increase in mortality is not known, it is recommended to minimise hypercapnia and hypercapnic acidosis during lung protective ventilation. Minimally invasive extracorporeal carbon dioxide removal (ECCO2R) devices are shown to reduce hypercapnia and hypercapnic acidosis. There are several devices that are currently available in the current clinical practice. However, the effect of these devices on reduction in ventilator induced lung injury is not clearly demonstrated. This study aims to assess the use of an ECCO2R device called Prismalung in reducing ventilator induced lung injury. PrismaLung is currently used in our intensive care unit. This assessment is done by measuring interleukins in bronchoalveolar lavage fluid and blood interleukin levels as well as clinical assessment including the reduction of driving pressure.

NCT ID: NCT06296173 Not yet recruiting - Anesthesia Clinical Trials

Open Lung Protective Extubation Following General Anesthesia

OLEXT-3
Start date: September 1, 2024
Phase: N/A
Study type: Interventional

Perioperative respiratory complications are a major source of morbidity and mortality. Postoperative atelectasis plays a central role in their development. Protective "open lung" mechanical ventilation aims to minimize the occurrence of atelectasis during the perioperative period. Randomized controlled studies have been performed comparing various "open lung" ventilation protocols, but these studies report varying and conflicting effects. The interpretation of these studies is complicated by the absence of imagery supporting the pulmonary impact associated with the use of different ventilation strategies. Imaging studies suggest that the gain in pulmonary gas content in "open lung" ventilation regimens disappears within minutes after the extubation. Thus, the potential benefits of open-lung ventilation appear to be lost if, at the time of extubation, no measures are used to keep the lungs well aerated. Recent expert recommendations on good mechanical ventilation practices in the operating room conclude that there is actually no quality study on extubation. Extubation is a very common practice for anesthesiologists as part of their daily clinical practice. It is therefore imperative to generate evidence on good clinical practice during anesthetic emergence in order to potentially identify an effective extubation strategy to reduce postoperative pulmonary complications.

NCT ID: NCT06236685 Enrolling by invitation - Clinical trials for Mechanical Ventilation Complication

Optimizing the Assessment of Mechanical Ventilation by Integrating Advanced Monitoring Techniques [AVIM]

AVIM
Start date: March 2024
Phase: N/A
Study type: Interventional

The aim of this study is to collect synchronized data from multiple monitoring techniques of mechanical ventilation (pressure/flow waves from the ventilator, electrical impedance tomography - EIT, esophageal pressure, capnography) in patients ventilated either on intensive care units or during anesthesia and evaluate the data by detailed mathematical analysis, to test three hypotheses: 1. Various published methods of calculation of the expiratory time constant provide different results in most cases. 2. Inhomogeneous ventilation (as described by EIT) affects the form of the expiratory flow curve and thus the calculated expiratory time constants. 3. The calculation of mechanical energy transferred to the lungs is affected by the chosen technique and length of the inspiratory pause maneuver. This study does not test any new or non-standard methods and does not in any way interfere with the course of treatment indicated by the clinician, apart from extending the monitoring techniques.

NCT ID: NCT06157073 Not yet recruiting - ARDS Clinical Trials

Efficacy and Safety of Automated Closed-loop Ventilator vs Conventional Open-loop Ventilator in the Emergency Department

AVAC
Start date: January 1, 2024
Phase: N/A
Study type: Interventional

Patients presenting to the emergency department (ED) may require breathing support with machines depending on the condition. Throughout the breathing support, the settings on the breathing machines will be tailored to the patient's requirements. These settings are manually adjusted by trained physicians. Currently, there are machines which can automatically change the settings based on real-time specific information obtained from the patient. This study aims to compare the use of machines which require manual adjustments (open-loop conventional ventilators) and machines which can automatically change the settings (closed-loop automated ventilators). Patients will be carefully selected to ensure no harm is caused whilst delivering the best care. This study will look into the duration when patients are receiving optimum settings and levels of oxygen and carbon dioxide in the blood. The outcomes of this study would allow us to identify methods to improve patient care.

NCT ID: NCT06093958 Withdrawn - COVID-19 Clinical Trials

Paradoxical Response to Chest Wall Loading in Mechanically Ventilated Patients

Start date: December 1, 2021
Phase: N/A
Study type: Interventional

The purposes of our study are to: 1) determine the incidence of paradoxical response to chest wall loading in mechanically ventilated patients; 2) identify sub-populations in which it is most likely to occur (e.g., severe ARDS); and 3) standard the bedside procedure for demonstrating this physiology.

NCT ID: NCT06035146 Recruiting - ARDS Clinical Trials

Mechanical Ventilation in Patients With Lung Impairment Controlled by the Mechanical Energy of the Respiratory System

Start date: August 1, 2022
Phase: N/A
Study type: Interventional

A project aimed at expanding the monitoring of mechanical energy (ME) in patients on mechanical ventilation (MV), with the aim of contributing to reducing the influence of the device for mechanical ventilation of patients on the lung parenchyma by setting parameters that will lead to lower ventilation energy. According to the parameters set on the device for mechanical ventilation, the mechanical energy will be calculated, which the physician in the interventional arm of the study will be able to use to change the mechanical ventilation settings. The physician will follow the best clinical practice, and in the non-intervention group, the MV setting will be conventional.

NCT ID: NCT06026670 Completed - Clinical trials for Ventilator-Induced Lung Injury

Optimal Positive End-Expiratory Pressure in Robotic-Assisted Thoracic Surgery

PEEP-RATS
Start date: July 3, 2023
Phase:
Study type: Observational [Patient Registry]

Minimally invasive thoracic surgery is increasingly popular. Recently, a new minimally invasive thoracic approach, robotic-assisted thoracic surgery (RATS) has been developed. RATS presents some advantages compared to VATS such as three-dimensional view of the surgical field, its precisions facilitates the navigation in difficult to access spaces and eliminates tremor which reduces learning curve and it may have a reduction of complications. During RATS and differently from VATS, not only one lung ventilation (OLV) is needed but also a continuous tension capnothorax. CO2 insufflation with intrathoracic positive pressure has a potential negative impact on the cardiorespiratory physiology. Moreover, CO2 insufflation and one lung ventilation can produce ventilation induced lung injury which are related to pulmonary postoperative complications (PPC). In order to reduce PPC and ventilation induced lung injury, lung protective strategies are used which reduce atelectrauma and overdistension. These strategies consist of three main pillars: use of low tidal volumes, performance of recruitment maneuvers and application of optimal positive end-expiratory pressure (PEEP). However, optimal PEEP levels and actual effects of PEEP are not clear. Several clinical studies with one-lung ventilation have reported improved oxygenation and ventilation when an alveolar recruitment maneuver is performed with a standardized PEEP of 5 to 10 cm·H2O. Nevertheless, other studies observe during one-lung ventilation improvements in oxygenation and lung mechanics with individualized PEEP determined by using a PEEP decrement titration trial after an alveolar recruitment maneuver. The effect of a tension capnothorax during RATS may modify pulmonary compliance and optimal PEEP may be different from patients having VATS resection. Even though both methods are habitual in the clinical practice, there are no studies of the effect of an alveolar recruitment maneuver with individualized PEEP during one-lung ventilation in Robotic-Assisted Thoracic Surgery (RATS). The investigators hypothesized that such a procedure would improve oxygenation and lung mechanics during one-lung ventilation in RATS compared with the establishment of a standardized PEEP. The investigators perform a descriptive observational prospective study to test this hypothesis.

NCT ID: NCT05991258 Recruiting - Clinical trials for Acute Respiratory Failure

Effect of End-inspiratory Airway Pressure Measurements on the Risk of VILI in Ventilated Patients

P1P2Decay
Start date: March 9, 2023
Phase:
Study type: Observational

Mechanical ventilation may be associated with ventilator-induced lung injury (VILI). Several respiratory variables have been employed to estimate the risk of VILI, such as tidal volumes, plateau pressure, driving pressure, and mechanical power. This dissipation of energy during ventilation can contribute to VILI through two mechanisms, stress relaxation and pendelluft, which can be estimated at the bedside by applying an end-inspiratory pause and evaluating the slow decrease in airway pressure going from the pressure corresponding to zero flow (called pressure P1) and the final pressure at the end of the pause (called plateau pressure P2). The choice of measuring the end-inspiratory airway pressure (PawEND-INSP) at a fixed, although relatively early, timepoint, i.e., after 0.5 second from the beginning of the pause, as prescribed by the indications of the Acute Respiratory Distress Syndrome (ARDS) Network, while assessing the risk of VILI associated with the elastic pressure of the respiratory system, may not reflect the harmful potential associated with the viscoelastic properties of the respiratory system. It is still unclear whether an PawEND-INSP measured at the exact moment of zero flow (P1) is more reliable in the calculation of those variables, such as ΔP and MP, associated with the outcomes of patients with and without ARDS, as compared to the pressure measured at the end of the end-inspiratory pause (plateau pressure P2). This multicenter prospective observational study aims to evaluate whether the use of P1, as compared to P2, affects the calculation of ΔP and MP. The secondary objectives are: 1) verify whether in patients with a lung parenchyma characterized by greater parenchymal heterogeneity, as assessed by EIT, P1-P2 decay is greater than in patients with greater parenchymal homogeneity; 2) evaluate whether patients with both ΔP values calculated using P1 and P2 <15 cmH2O (or both MP values calculated using P1 and P2 <17 J/min) develop shorter duration of invasive mechanical ventilation, shorter ICU and hospital length of stay and lower ICU and hospital mortality, as compared to patients with only ΔP calculated with P1 ≥ 15 cmH2O (or only MP calculated with P1 ≥ 17 J/min) and patients with both ΔP values calculated using P1 and P2 ≥ 15 cmH2O (or both MP values calculated using P1 and P2 ≥ 17 J/min).