Clinical Trials Logo

Clinical Trial Summary

Type 2 diabetes mellitus (T2DM) reduces the ability of the body to use sugar as a fuel. As an alternative people with T2DM can use fat from the blood stream instead. Fat is a good store of energy, however, the body requires about 20% more oxygen to produce energy from fat compared to sugar. People with T2DM often have heart disease as well. This can lead to limited availability of oxygen in the heart muscle, which increases the workload of the heart and will impact on the ability to perform everyday tasks, such as walking up a flight of steps. Recently, it has been suggested that ketone esters (a sports drink that contains ketones) may be used as an alternative source of energy for people with diabetes as they are approximately 8% more efficient than fat. The investigators will assess whether these ketones can be used as a more efficient source of energy and improve how the heart works in people with T2DM. If successful, this is a relatively cheap treatment, which could be immediately implemented in people with T2DM to improve heart function and the ability to perform everyday tasks.


Clinical Trial Description

Type 2 diabetes mellitus (T2DM) is a chronic and progressive metabolic disease associated with an increased prevalence of cardiovascular events, and therefore represents a significant global health concern. The aetiology of the disease is complex and involves the interaction of both non-modifiable (i.e., genetic predisposition) and modifiable (e.g., physical activity levels, diet, body mass) risk factors. Individuals with T2DM have an impaired ability to utilise glucose, the body's most efficient energy substrate (providing 2.58 ATP per molecule of oxygen), due to a decreased capacity to produce and/or utilise insulin. Consequently, there is an increased reliance on the metabolism of less efficient fuel sources, predominantly the metabolism of the free fatty acid palmitate, which produces 2.33 ATP per molecule of oxygen and thereby increases oxygen requirements by approximately 10% relative to glucose metabolism. This increased oxygen cost that manifests at rest and during exercise, increases the effort required to perform physical tasks which may discourage physical activity, further exacerbating the disease state and the prevalence of associated cardiovascular co-morbidities, and may ultimately reduce quality of life. Whereas at high concentrations, ketone bodies are known to be toxic, at a low dose ß hydroxybutyrate, one of the most common ketone bodies produced, can be used as a metabolic substrate. Although not an efficient store of energy per se, the energy can be released at a lower O2 cost than free fatty acids, generating 2.50 units of ATP per unit of O2 consumed. Theoretically, this 7% improvement in efficiency would be of benefit to those with heart disease and diabetes. Whilst there are several studies demonstrating the theoretical benefit of this improvement in efficiency in vitro or in animal models, to date this has not been demonstrated in humans. Sodium glucose transporter 2 (SGLT-2) inhibitors, a class of anti-hyperglycaemic agents, have been shown to suppress insulin production whilst stimulating glucagon, an action that engenders mild hyperketonaemia. Interestingly, recent trials have suggested the use of SGLT-2 inhibitors have a cardio-protective effect indicated by a significant reduction in cardiovascular related death in people with type 2 diabetes. It is hypothesised that this benefit is mediated through alternate substrate utilisation. These medications, however cannot be used for all individuals. They are not licensed for, nor are likely to be effective for people with impaired renal function, which is common among people with heart failure and diabetes. The associated risk of genital infections is over 10% even in those who have been prescribed the SGLT-2 inhibitors medication. Exogenous ketone supplements can be ingested in the form of ketone esters and have been proven efficient in improving metabolic profile by decreasing circulating glucose and free fatty acids. More specifically a ketone monoester (Kme) supplement has been shown to provide a rapid increase in blood ß-hydroxybutyrate levels within 30 min in healthy humans. Importantly, once ingested, Kme is metabolised into ß-hydroxybutyrate, which is the isoform produced by endogenous ketogenesis. Therefore, the oral consumption of Kme may be an interesting alternative for increasing ß hydroxybutyrate and therefore improving metabolic efficiency and cardiovascular function in individuals with T2DM. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04854330
Study type Interventional
Source University of Portsmouth
Contact Maria Perissiou, PhD
Phone +447762860432
Email maria.perissiou@port.ac.uk
Status Not yet recruiting
Phase N/A
Start date April 26, 2021
Completion date February 21, 2023

See also
  Status Clinical Trial Phase
Completed NCT05219994 - Targeting the Carotid Bodies to Reduce Disease Risk Along the Diabetes Continuum N/A
Completed NCT04056208 - Pistachios Blood Sugar Control, Heart and Gut Health Phase 2
Completed NCT02284893 - Study to Evaluate the Efficacy and Safety of Saxagliptin Co-administered With Dapagliflozin in Combination With Metformin Compared to Sitagliptin in Combination With Metformin in Adult Patients With Type 2 Diabetes Who Have Inadequate Glycemic Control on Metformin Therapy Alone Phase 3
Completed NCT04274660 - Evaluation of Diabetes and WELLbeing Programme N/A
Active, not recruiting NCT05887817 - Effects of Finerenone on Vascular Stiffness and Cardiorenal Biomarkers in T2D and CKD (FIVE-STAR) Phase 4
Active, not recruiting NCT05566847 - Overcoming Therapeutic Inertia Among Adults Recently Diagnosed With Type 2 Diabetes N/A
Recruiting NCT06007404 - Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
Completed NCT04965506 - A Study of IBI362 in Chinese Patients With Type 2 Diabetes Phase 2
Recruiting NCT06115265 - Ketogenic Diet and Diabetes Demonstration Project N/A
Active, not recruiting NCT03982381 - SGLT2 Inhibitor or Metformin as Standard Treatment of Early Stage Type 2 Diabetes Phase 4
Completed NCT04971317 - The Influence of Simple, Low-Cost Chemistry Intervention Videos: A Randomized Trial of Children's Preferences for Sugar-Sweetened Beverages N/A
Completed NCT04496154 - Omega-3 to Reduce Diabetes Risk in Subjects With High Number of Particles That Carry "Bad Cholesterol" in the Blood N/A
Completed NCT04023539 - Effect of Cinnamomum Zeylanicum on Glycemic Levels of Adult Patients With Type 2 Diabetes N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Enrolling by invitation NCT05530356 - Renal Hemodynamics, Energetics and Insulin Resistance: A Follow-up Study
Completed NCT04097600 - A Research Study Comparing Active Drug in the Blood in Healthy Participants Following Dosing of the Current and a New Formulation (D) Semaglutide Tablets Phase 1
Completed NCT03960424 - Diabetes Management Program for Hispanic/Latino N/A
Completed NCT05378282 - Identification of Diabetic Nephropathy Biomarkers Through Transcriptomics
Active, not recruiting NCT06010004 - A Long-term Safety Study of Orforglipron (LY3502970) in Participants With Type 2 Diabetes Phase 3
Completed NCT03653091 - Safety & Effectiveness of Duodenal Mucosal Resurfacing (DMR) Using the Revita™ System in Treatment of Type 2 Diabetes N/A