Traumatic Brain Injury Clinical Trial
Official title:
Remote Ischemic Conditioning as a Treatment for Traumatic Brain Injury: a Prospective Randomized Controlled Trial.
NCT number | NCT03176823 |
Other study ID # | RIC in TBI |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | May 3, 2019 |
Est. completion date | March 3, 2024 |
Verified date | March 2024 |
Source | Unity Health Toronto |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The prevention of secondary brain injury is a primary goal in treating patients with severe traumatic brain injury (TBI). Secondary brain injury results from tissue ischemia induced by increased vascular resistance in the at-risk brain tissue due to compression by traumatic hematomas, and development of cytotoxic and vasogenic tissue edema. While traumatic hematomas may be managed surgically, cytotoxic and vasogenic edema with resulting perfusion impairment perpetuates brain ischemia and injury. Animal models suggest that remote ischemic conditioning (RIC) can reverse these effects and improve perfusion. Based on these findings it is hypothesized that RIC will exert beneficial effects on TBI in man, thereby representing a new therapeutic strategy for severe TBI. Patients presenting to our institution suffering from severe TBI will be considered for enrollment. Eligible patients will have sustained a blunt, severe TBI (defined by Glasgow Coma Scale <8) with associated intra-cranial hematoma(s) not requiring immediate surgical decompression, with admission to an intensive care unit and insertion of an intra-cranial pressure monitor. Patients will be randomized to RIC versus sham-RIC intervention cohorts. RIC interventions will be performed using an automated device on the upper extremity delivering 20 cumulative minutes of limb ischemia in a single treatment session. The planned enrollment is a cohort of 40 patients. Outcomes of this study will include multiple domains. Our primary outcome will include serial assessments of validated serum biomarkers of neuronal injury and systemic inflammation. Secondary outcomes will include descriptions of the clinical course of each patient, radiologic assessment of brain perfusion, and neurocognitive and psychological assessment post-discharge. If clinical outcomes are improved using RIC, this study would support RIC as a novel treatment for TBI. Its advantages include safety and simplicity and, requiring no specialized equipment, its ability to be used in any environment including pre-hospital settings or in austere theatres. The investigators anticipate that TBI patients treated with RIC will have improved clinical, biochemical, and neuropsychological outcomes compared to standard treatment protocols.
Status | Completed |
Enrollment | 44 |
Est. completion date | March 3, 2024 |
Est. primary completion date | November 1, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Severe blunt traumatic brain injury presenting to St Michael's Hospital within 48 hours of trauma - Glasgow Coma Scale (GCS) less than or equal to 12 - Presence on CT Scan of intra-cranial hematoma which adequately explains level of consciousness (epidural, subdural, subarachnoid hematomae) - Able to undergo intervention within 48 hours of trauma Exclusion Criteria: - Age <18 years - Lack of informed consent or withdrawal of consent, provided by legal substitute decision maker - Unknown timing of trauma - Unable to safely undergo ischemic conditioning of the upper extremity due to major trauma, previous surgery, known vascular disease or previous radiation treatment - Acute significant injury (those injuries which in isolation would require admission to hospital) outside the head and neck region - Pre-hospital therapeutic anticoagulation or anti-platelet agent use - Surgical intervention within 12 hours of presentation to hospital, excluding pressure monitor insertion - Patient death within 24 hours of admission - Pre-intervention insertion of intra-cranial pressure monitor, as surgical trauma may influence biomarker measurements |
Country | Name | City | State |
---|---|---|---|
Canada | St Michaels Hospital | Toronto | Ontario |
Lead Sponsor | Collaborator |
---|---|
Unity Health Toronto | Defence Research and Development Canada |
Canada,
ACS TQIP Best Practices in the Management of Traumatic Brain Injury. 2015.
Blevins CA, Weathers FW, Davis MT, Witte TK, Domino JL. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): Development and Initial Psychometric Evaluation. J Trauma Stress. 2015 Dec;28(6):489-98. doi: 10.1002/jts.22059. Epub 2015 Nov 25. — View Citation
Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sorensen HT, Redington AN, Nielsen TT. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010 Feb 27;375(9716):727-34. doi: 10.1016/S0140-6736(09)62001-8. — View Citation
Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991 Nov;75(5):685-93. doi: 10.3171/jns.1991.75.5.0685. — View Citation
Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003 Jun;54(6):1127-30. doi: 10.1097/01.TA.0000069184.82147.06. — View Citation
Chen J, Graham SH, Zhu RL, Simon RP. Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab. 1996 Jul;16(4):566-77. doi: 10.1097/00004647-199607000-00006. — View Citation
DAHL NA, BALFOUR WM. PROLONGED ANOXIC SURVIVAL DUE TO ANOXIA PRE-EXPOSURE: BRAIN ATP, LACTATE, AND PYRUVATE. Am J Physiol. 1964 Aug;207:452-6. doi: 10.1152/ajplegacy.1964.207.2.452. No abstract available. — View Citation
Davies WR, Brown AJ, Watson W, McCormick LM, West NE, Dutka DP, Hoole SP. Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ Cardiovasc Interv. 2013 Jun;6(3):246-51. doi: 10.1161/CIRCINTERVENTIONS.112.000184. Epub 2013 May 21. — View Citation
Di Battista AP, Buonora JE, Rhind SG, Hutchison MG, Baker AJ, Rizoli SB, Diaz-Arrastia R, Mueller GP. Blood Biomarkers in Moderate-To-Severe Traumatic Brain Injury: Potential Utility of a Multi-Marker Approach in Characterizing Outcome. Front Neurol. 2015 May 26;6:110. doi: 10.3389/fneur.2015.00110. eCollection 2015. — View Citation
Er F, Nia AM, Dopp H, Hellmich M, Dahlem KM, Caglayan E, Kubacki T, Benzing T, Erdmann E, Burst V, Gassanov N. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation. 2012 Jul 17;126(3):296-303. doi: 10.1161/CIRCULATIONAHA.112.096370. Epub 2012 Jun 26. — View Citation
Gouvier WD, Blanton PD, LaPorte KK, Nepomuceno C. Reliability and validity of the Disability Rating Scale and the Levels of Cognitive Functioning Scale in monitoring recovery from severe head injury. Arch Phys Med Rehabil. 1987 Feb;68(2):94-7. — View Citation
Hall K, Cope DN, Rappaport M. Glasgow Outcome Scale and Disability Rating Scale: comparative usefulness in following recovery in traumatic head injury. Arch Phys Med Rehabil. 1985 Jan;66(1):35-7. — View Citation
Hunter JV, Wilde EA, Tong KA, Holshouser BA. Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma. 2012 Mar 1;29(4):654-71. doi: 10.1089/neu.2011.1906. Epub 2011 Oct 17. — View Citation
Joseph B, Pandit V, Zangbar B, Kulvatunyou N, Khalil M, Tang A, O'Keeffe T, Gries L, Vercruysse G, Friese RS, Rhee P. Secondary brain injury in trauma patients: the effects of remote ischemic conditioning. J Trauma Acute Care Surg. 2015 Apr;78(4):698-703; discussion 703-5. doi: 10.1097/TA.0000000000000584. — View Citation
Kim J, Whyte J, Patel S, Avants B, Europa E, Wang J, Slattery J, Gee JC, Coslett HB, Detre JA. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma. 2010 Aug;27(8):1399-411. doi: 10.1089/neu.2009.1215. — View Citation
Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 1990 Sep 24;528(1):21-4. doi: 10.1016/0006-8993(90)90189-i. — View Citation
Kreutzer JS, Seel RT, Gourley E. The prevalence and symptom rates of depression after traumatic brain injury: a comprehensive examination. Brain Inj. 2001 Jul;15(7):563-76. doi: 10.1080/02699050010009108. — View Citation
Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001 Sep;16(9):606-13. doi: 10.1046/j.1525-1497.2001.016009606.x. — View Citation
Leung CH, Caldarone CA, Wang F, Venkateswaran S, Ailenberg M, Vadasz B, Wen XY, Rotstein OD. Remote Ischemic Conditioning Prevents Lung and Liver Injury After Hemorrhagic Shock/Resuscitation: Potential Role of a Humoral Plasma Factor. Ann Surg. 2015 Jun;261(6):1215-25. doi: 10.1097/SLA.0000000000000877. — View Citation
Levin HS, Boake C, Song J, Mccauley S, Contant C, Diaz-Marchan P, Brundage S, Goodman H, Kotrla KJ. Validity and sensitivity to change of the extended Glasgow Outcome Scale in mild to moderate traumatic brain injury. J Neurotrauma. 2001 Jun;18(6):575-84. doi: 10.1089/089771501750291819. — View Citation
Lewis LM, Schloemann DT, Papa L, Fucetola RP, Bazarian J, Lindburg M, Welch RD. Utility of Serum Biomarkers in the Diagnosis and Stratification of Mild Traumatic Brain Injury. Acad Emerg Med. 2017 Jun;24(6):710-720. doi: 10.1111/acem.13174. Epub 2017 May 18. — View Citation
Liu X, Sha O, Cho EY. Remote ischemic postconditioning promotes the survival of retinal ganglion cells after optic nerve injury. J Mol Neurosci. 2013 Nov;51(3):639-46. doi: 10.1007/s12031-013-0036-2. Epub 2013 Jun 5. — View Citation
Liu X, Zhao S, Liu F, Kang J, Xiao A, Li F, Zhang C, Yan F, Zhao H, Luo M, Luo Y, Ji X. Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis. Transl Stroke Res. 2014 Dec;5(6):692-700. doi: 10.1007/s12975-014-0359-5. Epub 2014 Jul 22. — View Citation
Lopez-Aguilera F, Plateo-Pignatari MG, Biaggio V, Ayala C, Seltzer AM. Hypoxic preconditioning induces an AT2-R/VEGFR-2(Flk-1) interaction in the neonatal brain microvasculature for neuroprotection. Neuroscience. 2012 Aug 2;216:1-9. doi: 10.1016/j.neuroscience.2012.04.070. Epub 2012 May 6. — View Citation
McMillan T, Wilson L, Ponsford J, Levin H, Teasdale G, Bond M. The Glasgow Outcome Scale - 40 years of application and refinement. Nat Rev Neurol. 2016 Aug;12(8):477-85. doi: 10.1038/nrneurol.2016.89. Epub 2016 Jul 15. — View Citation
Pei H, Wu Y, Wei Y, Yang Y, Teng S, Zhang H. Remote ischemic preconditioning reduces perioperative cardiac and renal events in patients undergoing elective coronary intervention: a meta-analysis of 11 randomized trials. PLoS One. 2014 Dec 31;9(12):e115500. doi: 10.1371/journal.pone.0115500. eCollection 2014. — View Citation
Ren C, Gao M, Dornbos D 3rd, Ding Y, Zeng X, Luo Y, Ji X. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury. Neurol Res. 2011 Jun;33(5):514-9. doi: 10.1179/016164111X13007856084241. — View Citation
Schneiderman AI, Braver ER, Kang HK. Understanding sequelae of injury mechanisms and mild traumatic brain injury incurred during the conflicts in Iraq and Afghanistan: persistent postconcussive symptoms and posttraumatic stress disorder. Am J Epidemiol. 2008 Jun 15;167(12):1446-52. doi: 10.1093/aje/kwn068. Epub 2008 Apr 17. — View Citation
Schochl H, Solomon C, Traintinger S, Nienaber U, Tacacs-Tolnai A, Windhofer C, Bahrami S, Voelckel W. Thromboelastometric (ROTEM) findings in patients suffering from isolated severe traumatic brain injury. J Neurotrauma. 2011 Oct;28(10):2033-41. doi: 10.1089/neu.2010.1744. Epub 2011 Sep 23. — View Citation
Schoen M, Rotter R, Gierer P, Gradl G, Strauss U, Jonas L, Mittlmeier T, Vollmar B. Ischemic preconditioning prevents skeletal muscle tissue injury, but not nerve lesion upon tourniquet-induced ischemia. J Trauma. 2007 Oct;63(4):788-97. doi: 10.1097/01.ta.0000240440.85673.fc. — View Citation
Seel RT, Kreutzer JS, Rosenthal M, Hammond FM, Corrigan JD, Black K. Depression after traumatic brain injury: a National Institute on Disability and Rehabilitation Research Model Systems multicenter investigation. Arch Phys Med Rehabil. 2003 Feb;84(2):177-84. doi: 10.1053/apmr.2003.50106. — View Citation
Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab. 2010 Apr;30(4):769-82. doi: 10.1038/jcbfm.2009.262. Epub 2009 Dec 23. — View Citation
Shen Y, Kou Z, Kreipke CW, Petrov T, Hu J, Haacke EM. In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. Magn Reson Imaging. 2007 Feb;25(2):219-27. doi: 10.1016/j.mri.2006.09.018. Epub 2006 Nov 28. — View Citation
Sloth AD, Schmidt MR, Munk K, Kharbanda RK, Redington AN, Schmidt M, Pedersen L, Sorensen HT, Botker HE; CONDI Investigators. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur Heart J. 2014 Jan;35(3):168-75. doi: 10.1093/eurheartj/eht369. Epub 2013 Sep 12. — View Citation
Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neurocrit Care. 2004;1(4):479-88. doi: 10.1385/NCC:1:4:479. — View Citation
Struchen MA, Hannay HJ, Contant CF, Robertson CS. The relation between acute physiological variables and outcome on the Glasgow Outcome Scale and Disability Rating Scale following severe traumatic brain injury. J Neurotrauma. 2001 Feb;18(2):115-25. doi: 10.1089/08977150150502569. — View Citation
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien). 2017 Feb;159(2):209-225. doi: 10.1007/s00701-016-3046-3. Epub 2016 Dec 12. — View Citation
Thompson WH, Thelin EP, Lilja A, Bellander BM, Fransson P. Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury. Neuroimage Clin. 2016 May 9;12:1004-1012. doi: 10.1016/j.nicl.2016.05.005. eCollection 2016. — View Citation
Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, Edwards M, Rosmalen CF, Vissers JL. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010 Nov 16;75(20):1786-93. doi: 10.1212/WNL.0b013e3181fd62d2. — View Citation
Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, van Geel W, de Reus H, Biert J, Verbeek MM. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004 Apr 27;62(8):1303-10. doi: 10.1212/01.wnl.0000120550.00643.dc. — View Citation
Wang Y, Ge P, Yang L, Wu C, Zha H, Luo T, Zhu Y. Protection of ischemic post conditioning against transient focal ischemia-induced brain damage is associated with inhibition of neuroinflammation via modulation of TLR2 and TLR4 pathways. J Neuroinflammation. 2014 Jan 24;11:15. doi: 10.1186/1742-2094-11-15. — View Citation
Warren AM, Boals A, Elliott TR, Reynolds M, Weddle RJ, Holtz P, Trost Z, Foreman ML. Mild traumatic brain injury increases risk for the development of posttraumatic stress disorder. J Trauma Acute Care Surg. 2015 Dec;79(6):1062-6. doi: 10.1097/TA.0000000000000875. — View Citation
Wei D, Ren C, Chen X, Zhao H. The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS One. 2012;7(2):e30892. doi: 10.1371/journal.pone.0030892. Epub 2012 Feb 8. — View Citation
Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, Wolf B, Goebel U, Schwer CI, Rosenberger P, Haeberle H, Gorlich D, Kellum JA, Meersch M; RenalRIPC Investigators. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015 Jun 2;313(21):2133-41. doi: 10.1001/jama.2015.4189. — View Citation
* Note: There are 44 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Neuron Specific Enolase (NSE) - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | S100A12 - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Calcium Binding Protein Beta (S100B) - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Glial Fibrillary Acidic Protein (GFAP) - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Monocyte Chemoattractant Protein (MCP1) - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Epinephrine - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Norepinephrine - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Interleukin 10 (IL10) - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Interleukin 1 Beta (IL1B) - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Tumor Necrosis Factor Alpha (TNF Alpha) - biomarker | Plasma concentration measured by measured by enzyme-linked immunosorbent ELISA and multiplex platform at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | International Normalized Ratio (INR) - standard lab test. | Standard coagulation parameter, to be measured at all time points specified below. | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Prothrombin Time (PTT) - standard lab test. | Standard coagulation parameter, to be measured at all time points specified below | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Primary | Rotational Thromboelastometry (ROTEM), standard lab test. | ROTEM coagulation assessment using the commercial ROTEM device traditionally used for the assessment of trauma-induced coagulopathy, to be measured at all time points specified below | Admission (0 hours), 6 hours, 24 hours, 48 hours, and 72 hours | |
Secondary | Cerebral vascular perfusion, acute | Patients will undergo Arterial Spin Loading Functional Magnetic Resonance Imaging (fMRI) at 72 hours post-RIC to quantify blood flow to the acutely ischemic brain parenchyma. | 24 hours | |
Secondary | Intracranial Pressure (ICP) measurement, first 24 hours | The number of episodes of ICP >20 mmHg, measured in 15 minute increments, over the first 24 hours. | 24 hours | |
Secondary | Intracranial Pressure (ICP) measurement, 24-96 hours | The number of episodes of ICP >20 mmHg, measured in 15 minute increments, over 24-96 hours. | 24 hours, 96 hours | |
Secondary | Escalation along an established care algorithm | Patient care interventions will be plotted against the Tier 1, Tier 2, and Tier 3 categories of interventions described by the American College of Surgeons Trauma Quality Improvement Program (ACS TQIP) guidelines for the management of traumatic intracranial hypertension. | 12 months | |
Secondary | Mortality beyond 12 hours post-admission | Patient deaths occurring in the first 12 hours will result in patient-exclusion as it is unlikely that these patients would have had different outcomes regardless of treatment strategies. | 12 months | |
Secondary | Incidence of surgical decompression beyond 12 hours post-admission | Patient progression to need for definitive surgery occurring in the first 12 hours will result in patient-exclusion as it is unlikely that these patients would have had different outcomes regardless of treatment strategies. | 12 months | |
Secondary | Hospital length of stay, number of days | Number of continuous calendar days or partial calendar days admitted to an acute-care hospital. | 12 months | |
Secondary | Intensive Care Unit length of stay, number of days | Number of continuous calendar days or partial calendar days admitted to an intensive-care unit. | 2 months | |
Secondary | Total duration of mechanical ventilation, number of days | Number of calendar days or partial calendar days including treatment with invasive ventilation. | 2 months | |
Secondary | Destination of discharge | Home (functionally independent), rehabilitation facility, or chronic care facility | 12 months | |
Secondary | Glasgow Outcomes Scale, Extended (GOSE) - neurocognitive test | The GOSE scale assessing neurocognitive function will be assessed on hospital, discharge, at three months post-discharge, and at 6 and 12 months post-discharge. | discharge, 3 months, 6 months, and 12 months | |
Secondary | Disability Rating Scale (DRS) - neurocognitive function rating | The DRS scale assessing neurocognitive function will be assessed on hospital discharge, at three months post-discharge, and at 6 and 12 months post-discharge. | discharge, 3 months, 6 months, and 12 months | |
Secondary | Patient Health Questionnaire 9th edition (PHQ-9) - neurological - self assessment | The PHQ-9 screen for mental health disorders will be assessed on hospital discharge, at three months post-discharge, and at 6 and 12 months post-discharge. | discharge, 3, 6, and 12 months | |
Secondary | Posttraumatic Stress Disorder Checklist for the Diagnostic and Statistical Manual of Mental Disorders 5th edition (PCL-5) - neurological - self assessment | The PCL-5 screen for Post-Traumatic Stress Disorder will be assessed on hospital discharge, at three months post-discharge, and at 6 and 12 months post-discharge. | discharge, 3 months, 6 months, and 12 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Completed |
NCT04356963 -
Adjunct VR Pain Management in Acute Brain Injury
|
N/A | |
Completed |
NCT03418129 -
Neuromodulatory Treatments for Pain Management in TBI
|
N/A | |
Terminated |
NCT03698747 -
Myelin Imaging in Concussed High School Football Players
|
||
Recruiting |
NCT05130658 -
Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training
|
N/A | |
Recruiting |
NCT04560946 -
Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI
|
N/A | |
Completed |
NCT05160194 -
Gaining Real-Life Skills Over the Web
|
N/A | |
Recruiting |
NCT02059941 -
Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines
|
N/A | |
Recruiting |
NCT03940443 -
Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
|
||
Recruiting |
NCT03937947 -
Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
|
||
Completed |
NCT04465019 -
Exoskeleton Rehabilitation on TBI
|
||
Recruiting |
NCT04530955 -
Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS)
|
N/A | |
Recruiting |
NCT03899532 -
Remote Ischemic Conditioning in Traumatic Brain Injury
|
N/A | |
Suspended |
NCT04244058 -
Changes in Glutamatergic Neurotransmission of Severe TBI Patients
|
Early Phase 1 | |
Completed |
NCT03307070 -
Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury
|
N/A | |
Recruiting |
NCT04274777 -
The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
|
||
Withdrawn |
NCT04199130 -
Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI
|
N/A | |
Withdrawn |
NCT05062148 -
Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery
|
N/A | |
Withdrawn |
NCT03626727 -
Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia
|
Early Phase 1 |