Traumatic Brain Injury Clinical Trial
Official title:
Detection of Cerebral Ischemia With a Noninvasive Neurometabolic Optical Monitor
The goals of the project are to evaluate a noninvasive monitor of brain metabolism and blood flow in critically ill humans. If validated, such a reliable noninvasive brain blood flow and metabolism monitor, by allowing physiologic and pharmacologic decisions based on real-time brain physiology, potentially will become an important tool for clinicians in their efforts to prevent additional brain tissue death in patients admitted with stroke, brain hemorrhage and traumatic brain injury.
Many critically ill patients are admitted to the hospital with no infarcted brain tissue and yet, after a period of extremely intense and expensive critical care, the patients are discharged with new hospital-acquired dead brain tissue, with associated life-long disability or brain death. This situation arises from the critical barrier of there being no straightforward bedside methods to monitor cerebral blood flow (CBF) and its adequacy during progression of post-insult secondary brain damage. This is important because of the expectation that decrements in CBF in dangerous excess of decrements in cerebral metabolic rate for oxygen (CMRO2), if detected early, can be treated to avert brain infarction. Clinical examples of this issue, among many others, include post ischemic stroke edema, post thrombolysis hyperemia or occlusion, post SAH vasospasm, hyperemic and oligemic intracranial hypertension after traumatic brain injury or stroke, ICH associated global ischemia, and intra and post carotid endarterectomy oligemia and hyperperfusion. Critical care physicians need a bedside monitor of CBF coupled to CMRO2. The CMRO2 data will allow delineation of adequacy of CBF as occasionally CBF decrements are simply matching changes in CMRO2. The lack of such monitoring capability has resulted in clinicians making often not helpful therapeutic decisions directed to non-neurologic endpoints, e.g., blood pressure, PaCO2 and so on, "hoping" that such interventions will have a desired effect on brain perfusion and metabolism. Diffuse Correlation Spectroscopy (DCS) and Diffuse Optical Spectroscopy (DOS) are promising NNOM optical techniques under development at UPenn (Dr. Arjun Yodh) which can provide continuous bedside quantitative CBF, CMRO2 and oxygen extraction fraction (OEF) information. Determination of capability to detect anaerobic conditions, as the investigators propose doing, will make feasible the notion of individualized CBF, CMRO2, and OEF measurement and brain-directed therapeutic optimization by bedside caregivers. This will eventually support a significant change in the way Neurocritical Care is practiced, titrating therapy to neurophysiologic rather than cardiovascular/ pulmonary endpoints. UPenn research techniques presently provide information on relative quantitative changes in CBF and CMRO2 from baseline. The investigators propose also developing a method for measurement of absolute CBF and CMRO2 and further validating the absolute CBF against invasive thermodilution (ThD) CBF techniques. The investigators' long range goal and overall objective is to prevent in-hospital brain tissue death through development of improved bedside CBF/ CMRO2/OEF (NNOM) monitoring techniques. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Completed |
NCT04356963 -
Adjunct VR Pain Management in Acute Brain Injury
|
N/A | |
Completed |
NCT03418129 -
Neuromodulatory Treatments for Pain Management in TBI
|
N/A | |
Terminated |
NCT03698747 -
Myelin Imaging in Concussed High School Football Players
|
||
Recruiting |
NCT05130658 -
Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training
|
N/A | |
Recruiting |
NCT04560946 -
Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI
|
N/A | |
Completed |
NCT05160194 -
Gaining Real-Life Skills Over the Web
|
N/A | |
Recruiting |
NCT02059941 -
Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines
|
N/A | |
Recruiting |
NCT03940443 -
Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
|
||
Recruiting |
NCT03937947 -
Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
|
||
Completed |
NCT04465019 -
Exoskeleton Rehabilitation on TBI
|
||
Recruiting |
NCT04530955 -
Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS)
|
N/A | |
Recruiting |
NCT03899532 -
Remote Ischemic Conditioning in Traumatic Brain Injury
|
N/A | |
Suspended |
NCT04244058 -
Changes in Glutamatergic Neurotransmission of Severe TBI Patients
|
Early Phase 1 | |
Completed |
NCT03307070 -
Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury
|
N/A | |
Recruiting |
NCT04274777 -
The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
|
||
Withdrawn |
NCT04199130 -
Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI
|
N/A | |
Withdrawn |
NCT05062148 -
Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery
|
N/A | |
Withdrawn |
NCT03626727 -
Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia
|
Early Phase 1 |