Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02331615
Other study ID # 18-11-LOE
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date March 2013
Est. completion date March 21, 2017

Study information

Verified date August 2018
Source Loewenstein Hospital
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Traumatic brain injury (TBI) particularly affects the frontal lobes and patients often suffer from executive dysfunction and behavioral disturbances. These types of injuries often involve axonal damage to pre frontal brain areas, which mediate various cognitive and behavioral functions. Dorsolateral prefrontal circuit lesions cause executive dysfunction, orbitofrontal circuit lesions lead to personality changes characterized by disinhibition and anterior cingulate circuit lesions present with apathy. Patients who suffered traumatic frontal lobe damage often demonstrate a lasting, profound disturbance of emotional regulation and social cognition.

Weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex. this effect depends on the stimulation polarity and is specific to the site of stimulation. Interacting with cortical activity, by means of cortical stimulation, can positively affect the short-term cognitive performance and improve the rehabilitation potential of neurologic patients. In this respect, preliminary evidence suggests that cortical stimulation may play a role in treating aphasia, unilateral neglect, and other cognitive disorders.

Several possible mechanisms can account for the effects of tDCS and other methods on cognitive performance. They all reflect the potential of these methods to improve the subject's ability to relearn or to acquire new strategies for carrying out behavioral tasks. It was also found that Activation of prefrontal cortex by tDCS reduces appetite for risk during ambiguous decision making.

In this tDCS study the investigator uses one anode and one cathode electrode placed over the scalp to modulate a particular area of the central nervous system (CNS). The stimulation is administered via the neuroConn DC.Stimulator Serial number 0096. The DC-STIMULATOR is a micro-processor-controlled constant current source. The DC-STIMULATOR is a CE-certified medical device for conducting non-invasive transcranial direct current stimulation (tDCS) on people.Electrode positioning is determined according to the International EEG 10-20 System.


Recruitment information / eligibility

Status Completed
Enrollment 8
Est. completion date March 21, 2017
Est. primary completion date March 21, 2017
Accepts healthy volunteers No
Gender All
Age group 18 Years to 70 Years
Eligibility Inclusion Criteria

- Ages 18-70 years.

- Traumatic Brain injured patients who were diagnosed with executive function difficulties.

- Patients who are able to cooperate and comprehend simple instructions.

- Patients who can provide informed consent after both oral and written information was given and discussed.

Exclusion Criteria:

- Pregnancy.

- Patients who sufferred a penetrating head trauma.

- Patients who underwent a frontal craniotomy

- Patients with a history of Psychiatric problems

- In cases of Severe Porencephaly at stimulation site

- Active Epilepsy or a history of seizure.

Study Design


Intervention

Device:
neuroConn_CE_DC-STIMULATOR
right frontal anodal stimulation
neuroConn_CE_DC-STIMULATOR
left frontal anodal stimulation
SHAM
no meaningful stimulation will be given

Locations

Country Name City State
Israel Loewenstein Rehabilitation Center Ra'anana

Sponsors (1)

Lead Sponsor Collaborator
Loewenstein Hospital

Country where clinical trial is conducted

Israel, 

References & Publications (23)

Beeli G, Casutt G, Baumgartner T, Jäncke L. Modulating presence and impulsiveness by external stimulation of the brain. Behav Brain Funct. 2008 Aug 4;4:33. doi: 10.1186/1744-9081-4-33. — View Citation

Bikson M, Datta A, Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol. 2009 Jun;120(6):1033-4. doi: 10.1016/j.clinph.2009.03.018. Epub 2009 Apr 24. — View Citation

Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. J Neurol Sci. 2006 Nov 1;249(1):31-8. Epub 2006 Jul 14. — View Citation

Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123-9. — View Citation

Cicerone KD, Tanenbaum LN. Disturbance of social cognition after traumatic orbitofrontal brain injury. Arch Clin Neuropsychol. 1997;12(2):173-88. — View Citation

Dundas JE, Thickbroom GW, Mastaglia FL. Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes. Clin Neurophysiol. 2007 May;118(5):1166-70. Epub 2007 Feb 27. — View Citation

Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Théoret H, Boggio PS, Fregni F. Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci. 2007 Jun 6;27(23):6212-8. — View Citation

Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Zago S, Barbieri S, Priori A. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008 Sep;20(9):1687-97. doi: 10.1162/jocn.2008.20112. — View Citation

Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005 Sep;166(1):23-30. Epub 2005 Jul 6. — View Citation

Fregni F, Boggio PS, Nitsche MA, Rigonatti SP, Pascual-Leone A. Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress Anxiety. 2006;23(8):482-4. — View Citation

Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005 Mar 8;64(5):872-5. — View Citation

Jo JM, Kim YH, Ko MH, Ohn SH, Joen B, Lee KH. Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil. 2009 May;88(5):404-9. doi: 10.1097/PHM.0b013e3181a0e4cb. — View Citation

Liebetanz D, Koch R, Mayenfels S, König F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009 Jun;120(6):1161-7. doi: 10.1016/j.clinph.2009.01.022. Epub 2009 Apr 28. — View Citation

Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, Oliveri M, Pascual-Leone A, Paulus W, Priori A, Walsh V. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008 Oct;1(4):326-36. doi: 10.1016/j.brs.2008.07.002. Epub 2008 Oct 7. Review. — View Citation

Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):451-3. Epub 2007 Dec 20. — View Citation

Nitsche MA, Niehaus L, Hoffmann KT, Hengst S, Liebetanz D, Paulus W, Meyer BU. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin Neurophysiol. 2004 Oct;115(10):2419-23. — View Citation

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3:633-9. — View Citation

Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001 Nov 27;57(10):1899-901. — View Citation

Palm U, Keeser D, Schiller C, Fintescu Z, Nitsche M, Reisinger E, Padberg F. Skin lesions after treatment with transcranial direct current stimulation (tDCS). Brain Stimul. 2008 Oct;1(4):386-7. doi: 10.1016/j.brs.2008.04.003. Epub 2008 Jun 20. Erratum in: Brain Stimul. 2009 Jul;2(3):183. — View Citation

Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. Epub 2007 Jan 24. — View Citation

Schroeter ML, Ettrich B, Schwier C, Scheid R, Guthke T, von Cramon DY. Diffuse axonal injury due to traumatic brain injury alters inhibition of imitative response tendencies. Neuropsychologia. 2007 Nov 5;45(14):3149-56. Epub 2007 Jul 14. — View Citation

Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res. 2002 Aug;53(2):647-54. Review. — View Citation

Utz KS, Dimova V, Oppenländer K, Kerkhoff G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology--a review of current data and future implications. Neuropsychologia. 2010 Aug;48(10):2789-810. doi: 10.1016/j.neuropsychologia.2010.06.002. Epub 2010 Jun 11. Review. — View Citation

* Note: There are 23 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Change from baseline MindStreams-NeuroTrax MINDSTREAMS-NEUROTRAX Computerized tests assess brain wellness across an array of cognitive domains including: memory, executive function, visual spatial perception, verbal function, attention, information processing speed, and motor skills. The psychometric properties of the tests exploit the advantages of computerized testing, providing precise accuracy and reaction time measurements. NeuroTrax offers an unbiased, standardized, accurate and inexpensive tool with a wide range of applicability. The specific tests that will be administered are Go-No Go Response Inhibition and Visual Spatial Processing day 1 (twice), day 15, day 21
Secondary Change from baseline Behavior Rating Inventory of Executive Function- (Adult Version) BRIEF-A Measures an adult's views of him- or herself and captures important observer information for a comprehensive picture of the rated individual's executive functioning. day 1, day 21
Secondary Change from baseline Wechsler Adult Intelligence Scale (WAIS-III ) 1. The WAIS-III, a subsequent revision of the WAIS and the WAIS-R, was released in 1997. It provided scores for Verbal IQ (Intelligence quotient ), Performance IQ, and Full Scale IQ, along with four secondary indices (Verbal Comprehension, Working Memory, Perceptual Organization, and Processing Speed). day 1 (twice), day 15, day 21
See also
  Status Clinical Trial Phase
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Completed NCT04356963 - Adjunct VR Pain Management in Acute Brain Injury N/A
Completed NCT03418129 - Neuromodulatory Treatments for Pain Management in TBI N/A
Terminated NCT03698747 - Myelin Imaging in Concussed High School Football Players
Recruiting NCT05130658 - Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training N/A
Recruiting NCT04560946 - Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI N/A
Completed NCT05160194 - Gaining Real-Life Skills Over the Web N/A
Recruiting NCT02059941 - Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines N/A
Recruiting NCT03940443 - Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04465019 - Exoskeleton Rehabilitation on TBI
Recruiting NCT04530955 - Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS) N/A
Recruiting NCT03899532 - Remote Ischemic Conditioning in Traumatic Brain Injury N/A
Suspended NCT04244058 - Changes in Glutamatergic Neurotransmission of Severe TBI Patients Early Phase 1
Completed NCT03307070 - Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury N/A
Recruiting NCT04274777 - The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
Withdrawn NCT05062148 - Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery N/A
Withdrawn NCT04199130 - Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI N/A
Withdrawn NCT03626727 - Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia Early Phase 1