View clinical trials related to Traumatic Brain Injury.
Filter by:Traumatic brain injuries (TBI) are one of the leading causes of death and disability worldwide. These patients are burdened by physical, cognitive, and psychosocial deficits, leading to an important economic impact for society. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. TBI related disability is linked to the severity of the initial injury but also to the following neuroinflammatory response which may persist long after the initial injury. Moreover, a growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post traumatic disorders. Consequently, new therapies triggering immunomodulation and promoting neurological recovery are the subject of major research efforts. In this context, mesenchymal cell-based therapies are currently investigated to treat various neurological disorders due to their ability to modulate neuroinflammation and to promote simultaneous neurogenesis, angiogenesis, and neuroprotection. Clinical trials using intravenous MSC have been conducted for various pathologies, all these studies showing a good safety profile. The hypothesis of the study is that intravenous repeated treatment with MSC derived from Wharton's Jelly of the umbilical cord may be associated with a significant decrease of post-TBI neuroinflammation and improvement of neuroclinical status. The main objective of the study is to evaluate the effect of iterative IV injections of MSC on post-traumatic neuroinflammation measured in corpus callosum by PET-MRI at 6 months in severe brain injured patients unresponsive to simple verbal commands 5 days after sedation discontinuation.
Traumatic brain injury (TBI) causes lifelong disability. Children with TBI often have difficulties in attention regulation and executive functions affecting their daily living. Need for rehabilitation is often long-lasting and there is an increasing demand for timely, cost-effective, and feasible rehabilitation methods, where the training is targeted to support daily life functional capacity. The use of Virtual Reality (VR) in the rehabilitation of children with attention and executive function deficits offers opportunities to practice skills required in everyday life in environments emulating real-life situations. The aim of this research project is to develop a novel effective VR rehabilitation method for children with deficits in attention, activity control, and executive functions by using a virtual environment that corresponds to typical everyday life. In this randomized control study, VR glasses are used to present the tasks, and the levels of difficulty are adjusted according to the child's progress. The researchers expect that; 1) Intensive training improves the attention regulation, activity control skills, and executive functions of the children in the intervention group 2)Training of executive skills with motivating tasks in a virtual environment that is built to meet challenging everyday situations transfers to the child's everyday life, 3)The duration of the training effect does not depend on the success of the VR training itself, but on how well the child adopts new strategies that make everyday life easier and how the parent is able to support the child's positive behaviour in everyday life.
To date, there is no validated pharmacotherapy for olfactory disorders. Interestingly, olfactory training - the intentional exposure to odorants for the purposes of retraining the sense of smell - has shown success with as many as 28% of subjects over the course of 12 weeks.
This randomized waitlist control trial will evaluate the effects of a psychoeducational intervention called Resources for Enhancing All Caregivers' Health - Traumatic Brain Injury (REACH TBI) to decrease caregiver strain (primary outcome) and improve caregiver self-efficacy, anxiety, depression, and health care frustrations (secondary outcomes). This study will modify and adapt an award-winning caregiver intervention, Resources for Enhancing All Caregivers Health in the Department of Veterans Affairs (REACH VA), to support the needs of Caregivers of Veterans and Service Members with TBI.
The purpose of this study is to examine the safety and feasibility of using hyperpolarized metabolic MRI to study early brain metabolism changes in subjects presenting with head injury and suspected non-penetrating traumatic brain injury (TBI). This study will also compare HP pyruvate MRI-derived metrics in TBI patients with healthy subjects as well as Subarachnoid hemorrhage (SAH) patients to better understand if metabolic Magnetic resonance imaging scan (MRI) can improve our ability to diagnose a TBI. The FDA is allowing the use of hyperpolarized [1-13C] pyruvate (HP 13C-pyruvate) in this study. Up to 15 patients (5 with TBI, 5 with SAH, and 5 healthy volunteers) may take part in this study at the University of Maryland, Baltimore (UMB).
The purpose of this study is to investigate the clinical improvement measured by the Glasgow Outcome Scale Extended (GOS-E) with ABX-101 compared with Placebo intramuscular injection in participants with moderate to severe TBI.
Severe traumatic brain injury (sTBI) is a critical disease of public health importance. Increased intracranial play a significant role in the secondary injury of TBI. Reducing the ICP is helpful in reducing the mortality of sTBI. The threshold of ICP for sTBI has been suggested. The threshold of ICP for sTBI after decompressive craniectomy is not clear.
Early prediction of outcomes after acute brain injury (ABI) remains a major unsolved problem. Presently, physicians make predictions using clinical examination, traditional scoring systems, and statistical models. In this study, we will use a novel technique, "SeeMe," to objectively assess the level of consciousness in patients suffering from comas following ABI. SeeMe is a program that quantifies total facial motion over time and compares the response after a spoken command (i.e. "open your eyes") to a pre-stimulus baseline.
The goal of this clinical trial is to compare the effect of receiving the technology-based training along with the conventional therapy to the conventional therapy alone on executive functions among people with traumatic brain injury with mild to moderate cognitive deficit. It aims to answer: - If there is significant improvement in executive function skills among people with traumatic brain injury receiving technology-based training along with conventional therapy when compared to people with traumatic brain injury receiving conventional therapy alone. - To see if the demographic variable has any effect on the cognitive improvement Participants will in the intervention group will be given 45 minutes of extra training session using technology along with their usual rehabilitation session. And Participants in the control group will be receiving the usual rehabilitation sessions. Researchers will compare the changes in the outcome measures between the intervention and control group to see if the technology-based training along with conventional therapy had significant effect on executive skills among people with traumatic brain injury.
Traumatic brain injury (TBI) is a major public health concern, particularly among older adults (OAs) ≥ 65 years of age. Each year in the United States, TBI results in over 600,000 emergency department visits and hospitalizations among OAs. Mild TBI (mTBI) accounts for 80% of all TBI in OAs and is quite understudied in this rapidly growing population. mTBI, is mild in name only, as it can result in dysfunction in multiple cognitive domains, including attention, processing speed, executive functioning and memory and has been shown to be associated with progressive brain atrophy and increased susceptibility to neurodegenerative disorders. Cognitive rehabilitation therapy is an evidence-based approach that can successfully improve cognitive impairment following TBI. Virtual reality (VR) is emerging as a technology that can assess cognitive impairment and provide a neurorehabilitation modality (NRM) to improve cognitive decline post TBI. Not only can VR provide a variety of environments like those encountered in real life and be adapted to varying levels and types of cognitive disability, but it can also be used safely in a patient's home with minimal equipment. Yet, despite the promise of cognitive rehabilitation using VR among OAs, very few studies to date have assessed the efficacy of VR cognitive rehabilitation in TBI. The aim of this study is to assess the effect and collect data on the efficacy and feasibility of a virtual reality application as a neurorehabilitation modality on executive functioning (attention, immediate memory, and visual-spatial skills) in OAs with mTBI. The hypothesis is that The use of VR mediated cognitive exercises post mTBI will be associated with improved executive function at 6-weeks post-randomization compared to the control group.