View clinical trials related to Traumatic Brain Injury.
Filter by:This was a multicenter randomized controlled study of 98 severe Traumatic Brain Injury patients with tracheostomy. Patients enrolled were divided randomly into the observation group with Intermittent Oro-esophageal Tube Feeding or the control group with Nasogastric tube feeding for enteral nutrition support, respectively. Nutritional status, complications, decannulation of tracheostomy tubes and level of consciousness on day 1 and day 28 were recorded and compared.
The goal of this or clinical trial is to explore efficacy of stellate ganglion block on dysphagia and activities of daily living in Traumatic Brain Injury Patients. The main question it aims to answer are: Can stellate ganglion block improve the dysphagia and activities of daily living in Traumatic Brain Injury Patients. Traumatic Brain Injury Patients will be divided into the the control group and observation group evenly. All the patients were provided with routine therapy, while the patients in the observation group were given stellate ganglion block. The swallowing function, and activities of daily living of the two groups of patients before and after treatment were evaluated.
This research study is being done to look at the safety and diagnostic benefit of conducting an TMS(transcranial magnetic stimulation)-EEG measured before and after a brief experimental stimulation session using investigational devices repetitive TMS or transcranial direct current stimulation (tDCS).
This research is being done to understand the role of different recovery methods in healing time after athletic or sports related concussion.
Service members and veterans (SMVs) report more persisting symptoms following traumatic brain injury (TBI) compared to civilian populations (Ommaya, Ommaya, Dannenber, & Salazar, 1996). Therefore, it is important to utilize interventions that reduce psychological impairments and increase resiliency during military TBI rehabilitation. Unlike traditional behavioral health treatments that focus on reducing maladaptive behaviors and negative thoughts, positive psychological treatments focus on increasing positive emotions to increase well-being. There is substantial growing evidence demonstrating that cultivating positive emotions is preventative and improves resiliency and psychological (Bolier et al., 2013; Sin & Lyumbomirsky, 2009), cognitive (Estrada, Isen, & Young, 1997; Ashby & Isen, 1999; Isen & Daubman, 1984; Isen, Daubman, & Nowicki, 1987; Fredrickson & Branigan, 2001), and health outcomes (Pressman & Cohen, 2005). This study will examine the effectiveness of traditional behavioral health treatment versus behavioral health treatment with an added positive psychological group treatment in terms of psychological, cognitive, and health outcomes during TBI rehabilitation. The hypothesis is that SMV's with TBI will experience improved outcomes with added positive psychological treatment compared to traditional behavioral health treatment alone. There will be about 100 people taking part in the study, randomly assigned to either a traditional behavioral health treatment group or an alternative behavioral health treatment group (therefore, up to 50 people will be enrolled in each) at the Fort Belvoir Intrepid Spirit Center over a period of 30 months. Study participants will be randomly assigned to groups, and over 3 months the study procedures include participating in group behavioral health treatment and/or individual behavioral health treatment and completing pre/post-treatment questionnaires focusing on psychological, cognitive, and health outcomes. The behavioral health intervention has not been well-studied; thus, the behavioral health intervention is considered experimental for the treatment of psychological symptoms. Additionally, the impact on other areas of functioning (i.e., cognitive functioning and overall health) is currently unknown.
Transcranial electrical stimulation (tES) is a non-invasive form of brain stimulation that has previously been to shown to have therapeutic potential in traumatic brain injury (TBI) patients. In this study, the study team will use a brain activity monitor (electroencephalogram, EEG) and a computer-based task to observe the effects of different forms of tES, like transcranial direct current stimulation (tDCS) and transcranial pulsed current stimulation (tPCS), on impulse control and sustained attention in people with TBI. Additionally, the study team will measure how much tDCS and tPCS affect the brain activity of a specific area of the brain associated with impulse control and attention. Problems with response inhibition have been shown to make rehabilitation more difficult for people with TBI. It also reduces social functioning and can also negatively affect job performance, which ultimately lead to a decreased quality of life. A better understanding of the effects of tES in TBI patients could be informative in finding out what its therapeutic potential is for this population.
The purpose of this research study is to develop a method to improve thinking difficulties in individuals who have experienced a traumatic brain injury and report experiencing difficulties in attention and concentration. This study aims to understand how cognitive rehabilitation of attention difficulties affects brain activity.
Background: People who have had a traumatic brain injury (TBI) often experience fatigue. Fatigue is the feeling tired all the time. Researchers want to learn more about how TBI and fatigue are related. Objective: To better understand fatigue after TBI in active duty military and veterans. Eligibility: Active duty service members or veterans ages 25-40 who have sustained at least 1 TBI more than 6 months but less than 5 years ago Design: Participants will be screened with: - Medical history - Physical exam - Blood and urine tests Participants will have Visit 1 the same day as screening. This will include questionnaires and interviews. These will be about their fatigue, quality of life, and health. Participants will wear an activity monitor on their wrist and complete a sleep diary for 7 days at home. Participants will have Visit 2: They will stay in the clinic for 2 nights. The visit will include: - Tests of memory, attention, and thinking - Placement of intravenous (IV) line: A needle will guide a thin plastic tube into the participant s arm vein. - 2 overnight sleeps tests: Participants brain waves will be recorded while they sleep. Small electrodes will be placed on the scalp. Monitors will be placed on the skin. These will measure breathing, heart rate, and movement. Blood will be drawn overnight through the IV line. - Optional hydrocortisone stimulation test: Participants will receive the hormone through the IV line. Blood will be drawn through the IV line 5 times over 1 hour. - Optional MRI: Participants will lie in a machine. This machine is a metal cylinder that takes pictures of the brain.
The objective of the proposed research is to evaluate adult subjects currently taking phytocannabinoid Hemp-derived botanical supplements (HDS) during recovery from traumatic brain injury. This study seeks to answer whether subjects taking HDS formulations experience relief from self-reported symptoms or improved subjective well-being, sleep quality, cognitive benefits, side effects and/or quantifiable changes in brain state neuronal activity or stress biomarkers. We seek to answer whether regular users (once/week to multiple uses/day) of HDS experience signs of dependence, addiction or physiological withdrawal. To accomplish this we will use survey questions, quantitative EEG, cognitive testing and salivary biomarkers to determine the effectiveness of self-initiated HDS administration. In addition, we are interested in whether our objective measures allow us to understand why some people are responders to HDS health benefits while others are not.
Pulsed Electromagnetic Field (PEMF) Reduction of CSF and Serum Biomarkers After Traumatic Brain Injury (TBI). The primary objective of this pilot study is to determine whether PEMF treatment (PEMF+) reduces the magnitude and duration of the increase in CSF and blood biomarkers after traumatic brain injury (TBI) compared to a PEMF untreated (PEMF-) group. Values in both groups are compared to uninjured brain CSF and blood biomarker levels obtained from hydrocephalus patients undergoing ventriculo-peritoneal shunt placement. A secondary objective of this pilot study is to determine whether PEMF treatment improves the physiologic status of the brain as evaluated by brain tissue monitors of thermal dilution cerebral blood flow (CBF), intracranial pressure (ICP), and tissue PO2 (PbtO2). Improved physiologic status would be reflected by increased CBF, PbtO2, and reduced ICP. Improved physiologic status may also be inferred from derived variables reflecting improved cerebrovascular and intracranial pressure autoregulation. A tertiary objective of this pilot study is to obtain preliminary data on the relationship between the time course and magnitude of post-TBI CSF and blood biomarker levels as they relate to three month outcome by Glasgow outcome score extended (GOSE) and modified Rankin Score (mRS).