Stroke Clinical Trial
Official title:
Augmenting Kinesthetic Feedback to Improve Hemiparetic Arm Control After Stroke
Supplementing or augmenting sensory information to those who have lost proprioception after stroke could help improve functional control of the arm. Thirty subjects will be recruited to a single site to evaluate the ability of supplemental kinesthetic feedback (a form of vibrotactile stimulation) to improve motor function. Participants will be tested in performing reaching movements as well as more functional tasks such as simulated drinking from a glass
Status | Recruiting |
Enrollment | 30 |
Est. completion date | May 31, 2025 |
Est. primary completion date | May 31, 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 21 Years and older |
Eligibility | Inclusion Criteria: - stroke survivors who can perform our stabilization and grip modulation tasks and who - had a single ischemic or hemorrhagic stroke of the middle cerebral artery (MCA) in the chronic state of recovery (> 6 months post-stroke). - ability to give informed consent and be able to follow two-stage instructions. - mild-to-moderate motor impairment as assessed using the upper extremity (UE) portion of the Fugl-Meyer Motor Assessment (FM); i.e., UE-FM score between 28 and 50 (inclusive) out of a possible 66. - proprioceptive deficit at the elbow in the more involved (contralesional) arm. - preserved tactile sensation in either the ipsilesional arm and/or thigh. - a minimal active wrist extension of 5°. Exclusion Criteria: - Inability of subjects to give informed consent or follow two-stage instructions. - subjects with a bleeding disorder. - subjects with fixed contractures or a history of tendon transfer in the involved limb. - subjects with a diagnosis of myasthenia gravis, amyotrophic lateral sclerosis or any disease that might interfere with neuromuscular function. - subjects who are currently using or under the influence of aminoglycoside antibiotics, curare-like agents, or other agents that may interfere with neuromuscular function. - subjects with a history of epilepsy. - history of other psychiatric co-morbidities (e.g. schizophrenia). - malignant or benign intra-axial neoplasms. - concurrent illness limiting the capacity to conform to study requirements. - Cardiac pacemaker, cardiac arrhythmia or history of significant cardiovascular or respiratory compromise. - subjects with profound atrophy or excessive weakness of muscles in the target area(s) of testing. - subjects with a systemic infection. |
Country | Name | City | State |
---|---|---|---|
United States | Marquette University | Milwaukee | Wisconsin |
Lead Sponsor | Collaborator |
---|---|
Marquette University | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Medical College of Wisconsin |
United States,
Ballardini G, Krueger A, Giannoni P, Marinelli L, Casadio M, Scheidt RA. Effect of Short-Term Exposure to Supplemental Vibrotactile Kinesthetic Feedback on Goal-Directed Movements after Stroke: A Proof of Concept Case Series. Sensors (Basel). 2021 Feb 22;21(4):1519. doi: 10.3390/s21041519. — View Citation
Jayasinghe SAL, Sarlegna FR, Scheidt RA, Sainburg RL. The neural foundations of handedness: insights from a rare case of deafferentation. J Neurophysiol. 2020 Jul 1;124(1):259-267. doi: 10.1152/jn.00150.2020. Epub 2020 Jun 24. — View Citation
Jayasinghe SAL, Scheidt RA, Sainburg RL. Neural Control of Stopping and Stabilizing the Arm. Front Integr Neurosci. 2022 Feb 21;16:835852. doi: 10.3389/fnint.2022.835852. eCollection 2022. — View Citation
Krueger AR, Giannoni P, Shah V, Casadio M, Scheidt RA. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings. J Neuroeng Rehabil. 2017 May 2;14(1):36. doi: 10.1186/s12984-017-0248-8. Erratum In: J Neuroeng Rehabil. 2017 Jul 10;14 (1):69. — View Citation
Pomplun E, Thomas A, Corrigan E, Shah VA, Mrotek LA, Scheidt RA. Vibrotactile Perception for Sensorimotor Augmentation: Perceptual Discrimination of Vibrotactile Stimuli Induced by Low-Cost Eccentric Rotating Mass Motors at Different Body Locations in Young, Middle-Aged, and Older Adults. Front Rehabil Sci. 2022 Jul 1;3:895036. doi: 10.3389/fresc.2022.895036. eCollection 2022. — View Citation
Risi N, Shah V, Mrotek LA, Casadio M, Scheidt RA. Supplemental vibrotactile feedback of real-time limb position enhances precision of goal-directed reaching. J Neurophysiol. 2019 Jul 1;122(1):22-38. doi: 10.1152/jn.00337.2018. Epub 2019 Apr 17. — View Citation
Shah VA, Casadio M, Scheidt RA, Mrotek LA. Spatial and temporal influences on discrimination of vibrotactile stimuli on the arm. Exp Brain Res. 2019 Aug;237(8):2075-2086. doi: 10.1007/s00221-019-05564-5. Epub 2019 Jun 7. — View Citation
Shah VA, Casadio M, Scheidt RA, Mrotek LA. Vibration Propagation on the Skin of the Arm. Appl Sci (Basel). 2019 Oct 2;9(20):4329. doi: 10.3390/app9204329. Epub 2019 Oct 15. — View Citation
Shah VA, Thomas A, Mrotek LA, Casadio M, Scheidt RA. Extended training improves the accuracy and efficiency of goal-directed reaching guided by supplemental kinesthetic vibrotactile feedback. Exp Brain Res. 2023 Feb;241(2):479-493. doi: 10.1007/s00221-022-06533-1. Epub 2022 Dec 28. — View Citation
Suminski AJ, Doudlah RC, Scheidt RA. Neural Correlates of Multisensory Integration for Feedback Stabilization of the Wrist. Front Integr Neurosci. 2022 May 6;16:815750. doi: 10.3389/fnint.2022.815750. eCollection 2022. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Root Mean Square Kinematic Error | orthogonal distance between target and hand position during reaching and stabilizing | across experimental sessions spanning a typical time frame of 4 to 6 weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04043052 -
Mobile Technologies and Post-stroke Depression
|
N/A | |
Recruiting |
NCT03869138 -
Alternative Therapies for Improving Physical Function in Individuals With Stroke
|
N/A | |
Completed |
NCT04101695 -
Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects
|
N/A | |
Completed |
NCT04034069 -
Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial
|
N/A | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Completed |
NCT00391378 -
Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS)
|
N/A | |
Recruiting |
NCT06204744 -
Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial
|
N/A | |
Active, not recruiting |
NCT06043167 -
Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
|
||
Active, not recruiting |
NCT04535479 -
Dry Needling for Spasticity in Stroke
|
N/A | |
Completed |
NCT03985761 -
Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke
|
N/A | |
Recruiting |
NCT00859885 -
International PFO Consortium
|
N/A | |
Recruiting |
NCT06034119 -
Effects of Voluntary Adjustments During Walking in Participants Post-stroke
|
N/A | |
Completed |
NCT03622411 -
Tablet-based Aphasia Therapy in the Chronic Phase
|
N/A | |
Completed |
NCT01662960 -
Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke
|
N/A | |
Recruiting |
NCT05854485 -
Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03366129 -
Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
|
||
Completed |
NCT05805748 -
Serious Game Therapy in Neglect Patients
|
N/A | |
Completed |
NCT03281590 -
Stroke and Cerebrovascular Diseases Registry
|
||
Recruiting |
NCT05993221 -
Deconstructing Post Stroke Hemiparesis
|