View clinical trials related to Spinal Cord Injury.
Filter by:The objective of this study is to examine the efficacy of an integrated, participant-centered tele-health physical activity program for individuals with SCI on psychological and social factors through a parallel mixed-methods design approach. We will examine changes in psychological (self-efficacy, self-esteem, exercise outcome expectations, depression, positive affect and well-being, quality of life) and social factors (participation and satisfaction with social roles and activities, activity engagement) following participation in an 8-week integrated group tele-exercise health and wellness physical activity program, with retention assessed at 8-weeks following completion (16 weeks from baseline). We will also complete small group interviews with all participants to understand participant experiences of, response to, and recommendations before and following participation in group tele-exercise program. To date, there is extremely limited evidence for the efficacy of psychological and social well-being of remotely delivered community-based exercise to individuals with SCI. A pilot effectiveness trial of a tele-exercise health and wellness program will be conducted using a mixed methods design with a randomized waitlist control group. Quantitative and qualitative data collection is sequential in nature and other data are collected simultaneously. Individuals with SCI (living with injury 12 months or longer) will be recruited based on existing partnerships locally and nationally. To assess limited effectiveness, we aim to enroll 35 individuals with SCI. Recruitment of these participants will stem from the investigator's ongoing community partnership with local and national partners. The tele-exercise health & wellness program will consist of virtual group class, twice per week, intended to generate physical confidence and strength for individuals living with SCI. Each session will be co-led with by an individual living with SCI.
This study will examine the relationship between circulating irisin and bone health individuals with spinal cord injury. Additionally, this study seeks to examine the influence of muscle fiber type on circulating irisin and identify an exercise-based means to increase irisin concentrations.
Cardiovascular disease has become the leading cause of death in the spinal cord injury population. Increased reliance on the renin-angiotensin-aldosterone system (RAAS) is believed to decrease falls in blood pressure when moving from a laying down position to upright; however, findings in the general population link the RAAS with remodeling and restructuring of the arterial walls. Therefore, intervention to stabilize and normalize blood pressure should be a priority in individuals with spinal cord injury who have low blood pressure. Advances in stimulation on the skin of the spinal cord offer an approach to restore cardiovascular control and improve blood pressure regulation; however, electrode placement and stimulation parameters needed to increase blood pressure are not well understood. Therefore, the aim of the study is to identify placement of electrodes on the skin, and frequency and amplitude of the stimulation to regulate blood pressure.
In support of the long-term goal of developing new strategies to increase limb function after SCI, the objectives of this proposal are to: 1) Examine the behavioral and physiological effects of TESS on upper-limb muscles after cervical SCI; and 2) Maximize the recovery of reaching and grasping potential by using tailored TESS in a task-specific manner with motor training. Veterans with cervical spinal injuries and healthy volunteers will be recruited for this study.
Previous studies have shown that the neuroplasticity of the residual corticospinal fibers, the motor cortex and the spinal neurons plays an important role in the spontaneous functional recovery of people with neurological or musculoskeletal pathology. However, it is also possible to stimulate the neuroplasticity mechanisms of these structures through techniques aimed at rehabilitating different deficits (for example, motor function or sensitivity). In general, intervention programs are usually carried out, in most cases, using low-cost strategies such as therapeutic physical exercise programs. The objective of this study is to analyze the effectiveness of visual illusion therapies in combination with conventional exercises on the symptoms and signs related to incomplete spinal cord injury that affects the upper limb. The study will include the realization of three measurements that will be carried out one day before starting the program, one day after finishing it, and one month later (follow-up). The clinical assessment will be composed of the study of the following variables: Motor function and motor skills, Upper limb isometric force, Muscle activation, Muscle tone, Quality of life, Functionality. All interventions will last eight weeks and will be planned according to the availability of volunteers. In each session, it will be recorded if any type of adverse effect occurs. There will be four types of interventions: i. Visual Illusion (IV) and therapeutic exercise program (PE), ii.placebo and PE, iii. IV, iv. IV placebo.
SCI results in higher incidence of heart disease and diabetes and heart disease is the most common cause of death. Chronic inflammation, deleterious changes in vascular structure and impaired glucose metabolism are risk factors that contribute to both heart disease and diabetes. While exercise can help reduce these risk factors, paralysis and impaired accessibility often precludes exercise in persons with SCI. New research in able-bodied persons demonstrates passive heating decreases inflammation and improves vascular function. Similar studies in persons with SCI suggest they may also have the same health benefits however these studies only investigated the impact of short term (one episode) passive heating (as opposed to repeated bouts). Repeated bouts of heat exposure will likely be required to impact chronic inflammation, but this has never been tested in persons with SCI. This study will test the impact of repeated bouts (3x/week) of passive heat stress over a longer term (8 weeks) on inflammation, metabolism and vascular function.
Spinal cord injuries (SCI) are among the most debilitating conditions an individual can sustain with the estimates of SCI incidence in the United States at 12,000 new cases per year. The loss of innervation to the tissues muscle below the level of the lesion results in reduced physical activity which leads to an array of secondary complications including muscle atrophy, cardiovascular and metabolic disease, obesity and vascular dysfunction. This further leads to exercise intolerance, reduced quality of life and depression. Although current rehabilitative programs focus on improving muscle strength in this population, the efficacy of these programs is challenged by the injury related motor impairment, which limits the exercise intensity and subsequent positive muscular adaptations. Therefore, development of an exercise program that promotes maximal muscular adaptations to light intensity exercise could greatly improve the efficacy of rehabilitation in the SCI population and help restore functional capacity and quality of life for these individuals. Blood flow restriction (BFR) exercise has shown tremendous promise for improving muscle size and strength in a variety of healthy and clinical populations, however the benefits of BFR exercise for those with SCI has not been established. Thus, the purpose of this Merit proposal is to conduct a comprehensive study that explores the benefits and risks of BFR exercise in the incomplete SCI population. In general individuals with chronic incomplete SCI will be recruited to partake in two 8-week training periods (20 sessions) that involve traditional knee extension/flexion exercise or knee extension/flexion exercise with blood flow restriction. There will be a series of measurements before and after the 8-week intervention to look at changes in muscle and vascular function. Specific Aim 1 will determine how the 8-weeks of BFR exercise influenced muscle strength (Biodex isokinetic dynamometer), muscle cross sectional area and volume (CTscan) and fatigue resistance. Specific Aim 2 will determine how this novel 8-week training intervention impacts peripheral vascular function. Specifically, changes in nitric oxide mediated endothelial function will be determined through tests of flow mediated dilation, changes in endothelial function of the microvascular network will be determined through assessments of reactive hyperemia and changes in arterial stiffness will be determined through measurements of pulse wave velocity. Specific Aim 3 will focus on the safety of BFR exercise for the SCI population. Those with SCI are at greater risk for thrombosis and DVT compared to able bodied individuals. Although unlikely, the introduction of temporary blood stasis during BFR exercise might augment this risk. Thus, the third aim of this study will be to determine changes in innate immune activation and thrombosis risk. Specifically, blood will be collected at multiple timepoints throughout the training intervention and analyzed for hypoxia-inducible factor 1-alpha, neutrophil extra cellular traps (which act as prothrombotic scaffolds), neutrophil-platelet aggregates and inflammatory cytokines. Ultimately, if the improvements in muscle and vascular function following BFR resistance exercise is greater than the traditional resistance exercise often performed in rehabilitation settings, without increasing risk for DVT, it should be incorporated into the long-term rehabilitation programs for Veterans with SCI.
Objectives: The study objective is to carry a pilot clinical assessment comparing the exciflex bandage to standard of care (SoC) for ischemic wounds and will involve participants who are Veterans with lower extremity ischemic wounds. Research Plan: The study will employ a randomized repeated measures design to assess the therapeutic effectiveness of exciflex in clinical use. Methodology: All participants with chronic ischemic wounds treated at LSCDVAMC will be potentially eligible for the study. Primary target populations will include Veterans with SCI who are inpatients or residents of the on-site Long Term Care Unit and Veterans with diabetes being followed by the Podiatry Service for wound care. In addition to meeting the general inclusion criteria noted above, further exclusion criteria relating to clinical factors include; (1)Age less than 18 years and (2)Pregnancy. Clinical Significance: Chronic ischemic wounds fail to heal normally and are a major challenge in the long-term care of many Veterans. The exciflex bandage can improve outcomes and lower cost by automatically delivering electrotherapy without disturbing the wound dressing for up to seven days, unless indicated. The overall study goal is to complete pre-market testing and evaluation of the exciflex bandage system.
The reason for conducting this study is to learn about the best ways to help Veterans with spinal cord injury (SCI) gain meaningful employment. Spinal cord injury is a medically complex disability that poses unique barriers to employment for Veterans. Returning to work after SCI improves health and quality of life, which in turn can lower risk for suicide in this high-risk population. Hence, the Department of Veterans Affairs (VA) supports interventions that help Veterans with SCI return to work and may prevent suicide. Customized employment (CE) is an innovative strategy for tailoring vocational services to meet the needs of people with complex disabilities. To address barriers to employment faced by Veterans with SCI, this study will evaluate whether a customized employment intervention used in non-VA settings can be adapted for use by the VA as a part of SCI medical rehabilitation. The research goal is to evaluate how a CE intervention for Veterans with SCI (ACCESS-Vets) can help them discover their strengths to find and maintain competitive integrated employment in their communities. This study will compare ACCESS-Vets with the usual evidence-based supported employment program, known as Individual Placement and Support (IPS). Veterans with SCI who chose to participate in this study will be randomly selected (i.e. by chance) to work with a vocational rehabilitation specialist as part of the ACCESS-Vets intervention or the usual IPS employment program for about 8 months. Study participants will complete study questionnaires before, during, and after their participation in the employment interventions. Some Veterans and their medical rehabilitation providers will be interviewed about their experiences with the employment interventions. The study expects to find that Veterans who participate in ACCESS-Vets will have better employment and quality of life outcomes then those who participate in IPS. The study will provide information about the strategies used in the ACCESS-Vets and IPS interventions for addressing barriers to employment. Ultimately, this study may provide a model for making VA vocational services for Veterans with SCI more effective and sustainable.
This is an early feasibility trial to determine whether transcutaneous neuromuscular electrical stimulation, with or without transcutaneous spinal cord stimulation, using an investigational neurostimulation device improves functional arm/hand movements in individuals with paralysis or paresis due to a spinal cord injury or stroke and improves functional arm/hand or leg/foot movements in individuals with paralysis or paresis due to other brain or nerve injuries. In this study, eligible individuals that agree to participate will be asked to attend up to 5 study sessions a week for 1 year (depending on participant availability), with each session lasting up to 4 hours. At the first study session, participants will have their demographic information collected, vital signs assessed, and have measurements performed of their limbs and torso, as appropriate. They will also undergo clinical evaluations and tests to assess their current functional movement and sensation capabilities. During subsequent study sessions, participants will undergo many tasks designed to improve functional movements in paralyzed limbs. Specifically, participants will receive neuromuscular electrical stimulation to the limb(s) and/or electrical stimulation to the spinal cord to evoke specified movements. The stimulation parameters and locations on the spinal column and/or limb(s) that evoke specific movements will be noted. The movements will be assessed with visual inspection, electromyography, and/or sensors. The clinical evaluations and tests to assess functional movement and sensation capabilities will be repeated throughout the study and at the last study session to assess for functional improvements compared to the first study session. Upon completion of these study sessions, the individual's participation in the study is considered complete.