View clinical trials related to Small Intestine Cancer.
Filter by:RATIONALE: Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus, sirolimus, antithymocyte globulin, and methotrexate before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well sirolimus, tacrolimus, and antithymocyte globulin work in preventing graft-versus-host disease in patients undergoing a donor stem cell transplant for hematological cancer .
RATIONALE: Vaccines may help the body build an effective immune response to kill cancer cells. Giving vaccine therapy after an autologous stem cell transplant may kill any cancer cells that remain after transplant. PURPOSE: This clinical trial is studying how well vaccine therapy works in treating patients who have undergone autologous stem cell transplant for high-risk lymphoma or multiple myeloma.
RATIONALE: Monoclonal antibodies, such as AMG-479, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. PURPOSE: This phase I trial is studying the side effects and best dose of AMG-479 in treating patients with advanced solid tumors or non-Hodgkin lymphoma.
RATIONALE: Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth, and may stimulate the immune system to stop cancer cells from growing. PURPOSE: This phase I trial is studying the side effects and best dose of vorinostat after stem cell transplant in treating patients with high-risk lymphoma.
RATIONALE: Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving chemotherapy together with radiation therapy may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of gemcitabine when given together with radiation therapy in treating patients with locally advanced upper gastrointestinal cancer.
RATIONALE: Diagnostic procedures, such as visceral lymphatic mapping using isosulfan blue, may help find cancer of the pancreas, colon, stomach, small intestine, or gallbladder and find out how far the disease has spread. PURPOSE: This clinical trial is studying the side effects and how well visceral lymphatic mapping using isosulfan blue works in patients with cancer of the pancreas, colon, stomach, small intestine, or gallbladder.
RATIONALE: Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well sunitinib works in treating patients with metastatic, locally advanced, or locally recurrent sarcomas.
RATIONALE: Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody 3F8, can find tumor cells and carry tumor-killing substances to them without harming normal cells. This may be an effective treatment for central nervous system cancer or leptomeningeal metastases. PURPOSE: This phase II trial is studying the side effects and how well iodine I 131 monoclonal antibody 3F8 works in treating patients with central nervous system cancer or leptomeningeal cancer.
RATIONALE: Drugs used in chemotherapy, such as clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I/II trial is studying the side effects and best dose of clofarabine and to see how well it works in treating patients with T-cell or natural killer-cell lymphoma that has relapsed or not responded to previous treatment.
RATIONALE: Drugs used in chemotherapy, such as 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), work in different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects and best dose of 17-DMAG in treating patients with an advanced solid tumor or lymphoma.