View clinical trials related to Recurrence.
Filter by:The phase I portion of this study is designed for children or adolescents and young adults (AYA) with a diagnosis of a solid tumor that has recurred (come back after treatment) or is refractory (never completely went away). The trial will test 2 combinations of therapy and participants will be randomly assigned to either Arm A or Arm B. The purpose of the phase I study is to determine the highest tolerable doses of the combinations of treatment given in each Arm. In Arm A, children and AYAs with recurrent or refractory solid tumors will receive 2 medications called Onivyde and talazoparib. Onivyde works by damaging the DNA of the cancer cell and talazoparib works by blocking the repair of the DNA once the cancer cell is damaged. By damaging the tumor DNA and blocking the repair, the cancer cells may die. In Arm B, children and AYAs with recurrent or refractory solid tumors will receive 2 medications called Onivyde and temozolomide. Both of these medications work by damaging the DNA of the cancer call which may cause the tumor(s) to die. Once the highest doses are reached in Arm A and Arm B, then "expansion Arms" will open. An expansion arm treats more children and AYAs with recurrent or refractory solid tumors at the highest doses achieved in the phase I study. The goal of the expansion arms is to see if the tumors go away in children and AYAs with recurrent or refractory solid tumors. There will be 3 "expansion Arms". In Arm A1, children and AYAs with recurrent or refractory solid tumors (excluding Ewing sarcoma) will receive Onivyde and talazoparib. In Arm A2, children and AYAs with recurrent or refractory solid tumors, whose tumors have a problem with repairing DNA (identified by their doctor), will receive Onivyde and talazoparib. In Arm B1, children and AYAs with recurrent or refractory solid tumors (excluding Ewing sarcoma) will receive Onivyde and temozolomide. Once the highest doses of medications used in Arm A and Arm B are determined, then a phase II study will open for children or young adults with Ewing sarcoma that has recurred or is refractory following treatment received after the initial diagnosis. The trial will test the same 2 combinations of therapy in Arm A and Arm B. In the phase II, a participant with Ewing sarcoma will be randomly assigned to receive the treatment given on either Arm A or Arm B.
This phase Ib/II trial best dose, possible benefits and/or side effects of omacetaxine and venetoclax in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has come back (recurrent) or does not respond to treatment (refractory) and have a genetic change RUNX1. Drugs used in chemotherapy, such as omacetaxine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving omacetaxine and venetoclax may help to control the disease.
The purpose of this trial is to study the relationship between the angiogenic response to surgical aggression, determined through the serum levels of vascular endothelial growth factor (VEGF) on postoperative day four, and the tumor recurrence in patients with colon cancer operated with a curative intention.
Ga-68 PSMA-11 PET/CT is known as useful method for localizing recurred tumor lesions in prostate cancer patients with biochemical recurrence [elevated serum prostate specific antigen (PSA) after radical prostatectomy]. The recent digital PET/CT which is known to show better resolution and sensitivity than analogue PET/CT may have better performance for detecting early small recurred tumor lesions. This study is intended to compare the diagnostic performance (detection rate and positive predictive value) of Ga-68 PSMA-11 PET/CT using analogue PET/CT scanner and digital PET/CT scanner in same patients who had biochemical recurrence of prostate cancer.
This is a multicenter, prospective, single arm, non-randomized, open-label, phase 2 clinical study to evaluate safety and efficacy of valemetostat tosylate (DS-3201b) in patients with relapsed or refractory B cell lymphoma with 6 cohorts of patients including 2 biology-driven cohorts. Up to 141 patients will be enrolled in 6 different cohorts (40 patients with aggressive B-cell lymphoma, 41 with follicular lymphoma (FL), 20 with Mantle Cell Lymphoma (MCL) and 20 with other indolent lymphomas, and 20 patients with Hodgkin lymphoma (HL)). FL patients with EZH2 mutant (gain of function mutations) will be enrolled in the cohort 2bis. At least 8 aggressive B-cell lymphoma patients with EZH2 mutant will be enrolled in the cohort 1. The primary endpoint is the overall response rate (ORR) determined by investigator assessment.
This study is looking at the safety and efficacy of the drug combination of ASP8374 with cemiplimab in people with recurrent malignant glioma. The study will be conducted in two parts, the first portion of the study will be to establish the highest dose of ASP8374 that can be given safely with cemiplimab and will be used as the recommended dose of ASP8374 in combination with cemiplimab for the second portion of the study. The second portion of the study will be to compare the effect of having ASP8374 in combination with cemiplimab prior to surgery. The names of the study drugs involved in this study are: - ASP8374 - Cemiplimab
This phase I/Ib trial evaluates the best dose and side effects of ipilimumab in combination with either ibrutinib alone or with ibrutinib and nivolumab in treating patients with chronic lymphocytic leukemia (CLL) and Richter transformation (RT). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving ipilimumab with either ibrutinib alone or with ibrutinib and nivolumab may help control CLL and RT.
This phase II clinical trial studies the effect of lenvatinib, pembrolizumab, and paclitaxel in treating patients with endometrial, epithelial ovarian, fallopian tube, or primary peritoneal cancer that has come back (recurrent). While all 3 study drugs are FDA approved, and 2-drug combinations have been studied, the 3- drug combination has not been studied yet. The investigators believe that the addition of pembrolizumab to weekly paclitaxel and lenvatinib (or weekly paclitaxel to pembrolizumab and lenvatinib) is highly effective and safe with manageable side effects in both recurrent endometrial and platinum resistant ovarian cancer. The purpose of this trial is to study how well lenvatinib, pembrolizumab, and weekly paclitaxel work together in women who have recurrent endometrial cancer and/or recurrent platinum resistant ovarian, fallopian tube, and primary peritoneal cancer, and what kind of side effects patients may experience.
This phase I trial finds the appropriate parsaclisib dose level in combination with romidepsin for the treatment of T-cell lymphomas that have come back (relapsed) or that have not responded to standard treatment (refractory). The other goals of this trial are to find the proportion of patients whose cancer is put into complete remission or significantly reduced by romidepsin and parsaclisib, and to measure the effectiveness of romidepsin and parsaclisib in terms of patient survival. Romidepsin blocks certain enzymes (histone deacetylases) and acts by stopping cancer cells from dividing. Parsaclisib is a PI3K inhibitor. The PI3K pathway promotes cancer cell proliferation, growth, and survival. Parsaclisib, thus, may stop the growth of cancer cells by blocking PI3K enzymes needed for cell growth. Giving romidepsin and parsaclisib in combination may work better in treating relapsed or refractory T-cell lymphomas compared to either drug alone.
This phase I trial is to find out the best dose, possible benefits and/or side effects of magrolimab in combination with dinutuximab in treating patients with neuroblastoma that has come back (relapsed) or does not respond to treatment (refractory) or relapsed osteosarcoma. Magrolimab and dinutuximab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. The combination of magrolimab and dinutuximab may shrink or stabilize relapsed or refractory neuroblastoma or relapsed osteosarcoma. In addition, this trial may help researchers find out if it is safe to give magrolimab and dinutuximab after surgery to remove tumors from the lungs.