View clinical trials related to Recurrence.
Filter by:This phase I/II trial tests the safety, side effects and best dose of selinexor given in combination with the usual chemotherapy (temozolomide) and compares the effect of this combination therapy vs. the usual chemotherapy alone (temozolomide) in treating patients with glioblastoma that has come back (recurrent). Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Giving selinexor in combination with usual chemotherapy (temozolomide) may shrink or stabilize the tumor better than the usual chemotherapy with temozolomide alone in patients with recurrent glioblastoma.
The goal of this phase I trial is to evaluate the toxicity and feasibility of a tumor-specific RNA-NP vaccine in patients with stage IIB-IV melanoma who have progressed on anti-PD1 (a-PD1) adjuvant therapy.
VT ablation is a frequently performed intervention in patients with symptomatic ventricular tachycardia, electrical storm due to monomorphic VT and appropriate ICD shocks, primarily aiming at reducing the burden of complaints, and ICD shocks. The recommendations for its use were described in the ESC guideline for ventricular arrhythmias and the prevention of sudden cardiac death. To visualize the arrhythmogenic substrate leading to ventricular tachycardia complex mapping techniques are currently used in clinical routine, including conventional Point-by-Point mapping or Multielectrode Mapping. The latter is associated with shorter Mapping and overall procedure times, while maintaining the same primary endpoint of the procedure itself. The aim of this trial is to validate, whether the reduction of mapping and procedure time is associated with a comparable long-term outcome compared with conventional Point-by-Point mapping.
Children and adults with recurrent or progressive malignant brain tumors have a dismal prognosis, and outcomes remain very poor. Magrolimab is a first-in-class anticancer therapeutic agent targeting the Cluster of differentiation 47 (CD47)-signal receptor protein-alpha (SIRP-alpha) axis. Binding of magrolimab to human CD47 on target malignant cells blocks the "don't eat me" signal to macrophages and enhances tumor cell phagocytosis. Pre-clinical studies have shown that treatment with magrolimab leads to prolonged survival in models of Atypical Teratoid Rhabdoid Tumors (ATRT), diffuse intrinsic pontine glioma (DIPG), high-grade glioma (adult and pediatric), medulloblastoma, and embryonal tumors formerly called Primitive Neuro-Ectodermal Tumors (PNET). Safety studies in humans have proven that magrolimab has an excellent safety profile. Ongoing studies are currently testing magrolimab in adult myelodysplastic syndromes, acute myeloid leukemia, non-Hodgkin lymphoma, colorectal, ovarian, and bladder cancers. Herein we propose to test the safety of magrolimab in children and adults with recurrent or progressive malignant brain tumors.
This phase II trial studies the effect of atezolizumab and cabozantinib in treating adolescents and young adults with osteosarcoma that has come back (recurrent) or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving atezolizumab and cabozantinib may help to control the osteosarcoma.
This study is intend to explore the efficacy and safety of combined treatment of camrelizumab and bevacizumab in adult patients with recurrent glioblastoma.
This phase II trial studies the effects of trastuzumab deruxtecan in treating patients with HER2 positive osteosarcoma that is newly diagnosed or has come back (recurrent). Trastuzumab deruxtecan is a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug called deruxtecan. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers deruxtecan to kill them.
This phase I trial investigates the side effects and determines the best dose of an immune cell therapy called GD2CART, as well as how well it works in treating patients with osteosarcoma or neuroblastoma that has come back (relapsed) or does not respond to treatment (refractory). T cells are infection fighting blood cells that can kill tumor cells. The T cells given in this trial will come from the patient and will have a new gene put in them that makes them able to recognize GD2, a protein on the surface of tumor cells. These GD2-specific T cells may help the body's immune system identify and kill GD2 positive tumor cells.
This phase II trial studies how well celecoxib works through surgery and radiation therapy in treating patients with head and neck cancer that has spread to other places in the body (advanced). Celecoxib is Food and Drug Administration approved to treat arthritis, acute pain, and painful menstrual periods. Adding celecoxib to standard of care treatment may help to decrease the amount of time between surgery and radiation therapy.
This phase I/II trial studies the side effects and best dose of a radioactive agent linked to an antibody (211At-BC8-B10) followed by donor stem cell transplant in treating patients with high-risk acute leukemia or myelodysplastic syndrome that has come back (recurrent) or isn't responding to treatment (refractory). 211At-BC8-B10 is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving chemotherapy and total body irradiation before a stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can attack the body's normal cells, called graft versus host disease. Giving cyclophosphamide, mycophenolate mofetil, and tacrolimus after a transplant may stop this from happening.