Clinical Trials Logo

Clinical Trial Summary

The investigators will study SPECT imaging of radiopharmaceutical therapies given as standard of care or as part of other compatible research protocols. The goal is to validate the quantitative SPECT image reconstruction methods developed in this proposal, and to investigate the relation between dosimetry calculated from SPECT images and the outcomes. Patients will be recruited for SPECT/CT imaging during treatment. This is an observational study no additional new drugs or activities will be administrated. The investigators will perform SPECT imaging on a total of 80 patients (~20 each from year 2 to year 5). Each participant will be imaged 3 times after the first and last cycles of planned radiopharmaceutical therapy.


Clinical Trial Description

Radiopharmaceutical therapy (RPT) is an emerging systemic treatment modality that delivers radiation to targeted cells. Recently FDA approved RPT agents include Radium-223 for prostate cancer, 177Lu-DOTATATE for neuroendocrine cancers, and 177Lu-PSMA-617 for prostate cancer. RPT is currently being administered as weight-based or fixed activities for 4-6 cycles, and there is concern that this standardized regimen compromises the potential efficacy of this treatment modality. In large part, this is because rigorous, validated dosimetry methods are not in standard clinical use, especially for alpha emitter RPTs. Such methods using SPECT would make it possible to predict potential normal organ toxicity and tumor response for individual patients. The multidisciplinary Johns Hopkins RPT research group has focused on development of such SPECT dosimetry methods and has an active NIH P01 grant for this work. The ability to image and understand where the RPT distributes in patients makes it possible to estimate the radiation delivered to tissues. The study team of medical physics experts is developing quantitative 3-D, single-photon emission computed tomography (SPECT) imaging for dosimetry of beta and alpha emitters 1-9. Recognizing that such imaging must be made convenient to be widely adopted, the investigators are also examining the trade-off between simplifying imaging (shorter imaging times, fewer imaging sessions) and the accuracy of the absorbed dose calculations. Key barriers to implementing dosimetry for alpha emitters include the low count-rate and sub-optimal photon emissions and the emission of multiple daughter radionuclides. Currently available reconstruction methods in clinical SPECT systems cannot handle such complex imaging physics. The investigators have pioneered the development of simultaneous multiple radionuclide reconstruction methods for diagnostic applications. The overall goal of this project is to develop imaging methodologies that may be used to perform accurate RPT dosimetry and treatment planning, especially for alpha emitters. Within this context, the SEE-to-TREAT protocol will provide clinical data and images to validate quantitative reconstruction methods for SPECT imaging. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06389097
Study type Observational
Source Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
Contact Ana Kiess
Phone 443-287-7528
Email akiess1@jhmi.edu
Status Not yet recruiting
Phase
Start date May 2024
Completion date May 2029

See also
  Status Clinical Trial Phase
Recruiting NCT05613023 - A Trial of 5 Fraction Prostate SBRT Versus 5 Fraction Prostate and Pelvic Nodal SBRT Phase 3
Recruiting NCT05540392 - An Acupuncture Study for Prostate Cancer Survivors With Urinary Issues Phase 1/Phase 2
Recruiting NCT05156424 - A Comparison of Aerobic and Resistance Exercise to Counteract Treatment Side Effects in Men With Prostate Cancer Phase 1/Phase 2
Completed NCT03177759 - Living With Prostate Cancer (LPC)
Completed NCT01331083 - A Phase II Study of PX-866 in Patients With Recurrent or Metastatic Castration Resistant Prostate Cancer Phase 2
Recruiting NCT05540782 - A Study of Cognitive Health in Survivors of Prostate Cancer
Active, not recruiting NCT04742361 - Efficacy of [18F]PSMA-1007 PET/CT in Patients With Biochemial Recurrent Prostate Cancer Phase 3
Completed NCT04400656 - PROState Pathway Embedded Comparative Trial
Completed NCT02282644 - Individual Phenotype Analysis in Patients With Castration-Resistant Prostate Cancer With CellSearch® and Flow Cytometry N/A
Recruiting NCT06305832 - Salvage Radiotherapy Combined With Androgen Deprivation Therapy (ADT) With or Without Rezvilutamide in the Treatment of Biochemical Recurrence After Radical Prostatectomy for Prostate Cancer Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT05761093 - Patient and Physician Benefit/ Risk Preferences for Treatment of mPC in Hong Kong: a Discrete Choice Experiment
Completed NCT04838626 - Study of Diagnostic Performance of [18F]CTT1057 for PSMA-positive Tumors Detection Phase 2/Phase 3
Recruiting NCT03101176 - Multiparametric Ultrasound Imaging in Prostate Cancer N/A
Completed NCT03290417 - Correlative Analysis of the Genomics of Vitamin D and Omega-3 Fatty Acid Intake in Prostate Cancer N/A
Completed NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Completed NCT01497925 - Ph 1 Trial of ADI-PEG 20 Plus Docetaxel in Solid Tumors With Emphasis on Prostate Cancer and Non-Small Cell Lung Cancer Phase 1
Recruiting NCT03679819 - Single-center Trial for the Validation of High-resolution Transrectal Ultrasound (Exact Imaging Scanner ExactVu) for the Detection of Prostate Cancer
Completed NCT03554317 - COMbination of Bipolar Androgen Therapy and Nivolumab Phase 2
Completed NCT03271502 - Effect of Anesthesia on Optic Nerve Sheath Diameter in Patients Undergoing Robot-assisted Laparoscopic Prostatectomy N/A