Prostate Cancer Clinical Trial
Official title:
Phase I Trial of High Dose Rate Brachytherapy Combined With Stereotactic Body Radiation Therapy for Intermediate Risk Prostate Cancer Patients
Verified date | May 2024 |
Source | Thomas Jefferson University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The first technology is called high dose rate brachytherapy. Brachytherapy is sometimes called internal radiation therapy. High dose rate brachytherapy is a procedure that involves temporarily placing radioactive material inside the patient's body for about 10-20 minutes. Then, the remainder of the radiation treatment will be given over a 3 week period using stereotactic body radiation therapy (SBRT). SBRT is a novel treatment modality that involves the delivery of very high individual doses of radiation to tumors with high precision. This allows the doctor to deliver the same amount of radiation in a much shorter time. The purpose of this study is to determine the safety of brachytherapy when combined with hypofractionated SBRT.
Status | Active, not recruiting |
Enrollment | 42 |
Est. completion date | January 1, 2040 |
Est. primary completion date | July 27, 2016 |
Accepts healthy volunteers | No |
Gender | Male |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Adenocarcinoma of the prostate with intermediate risk disease T2b-T2c or Gleason score 7 or prostate specific antigen (PSA) 10-20 ng/ml, without metastatic disease - To rule out metastatic disease, patients must have the following tests: - Bone scan within 60 days prior to registration - Computed tomography (CT) of abdomen/pelvis within 60 days prior to registration - Karnofsky performance status > 70 - Age > 18 - PSA blood test within 60 days prior to registration - Prostate biopsy within 180 days prior to registration - Within 60 days prior to registration, hematologic minimal values: - Absolute neutrophil count > 1,500/mm^3 - Hemoglobin > 8.0 g/dl - Platelet count > 100,000/mm^3 - Men of childbearing potential must be willing to consent to using effective contraception while on treatment and for at least 3 months thereafter - No history of previous pelvic irradiation Exclusion Criteria: - History of urological surgery or procedures predisposing to GU complications after radiation, i.e., anastomoses, stricture repair, etc. (will be determined by radiation oncologist) - History of prior pelvic irradiation - Documented distant metastatic disease - Prior radical prostatectomy or cryosurgery for prostate cancer |
Country | Name | City | State |
---|---|---|---|
United States | Thomas Jefferson University | Philadelphia | Pennsylvania |
Lead Sponsor | Collaborator |
---|---|
Sidney Kimmel Cancer Center at Thomas Jefferson University |
United States,
Adkison JB, McHaffie DR, Bentzen SM, Patel RR, Khuntia D, Petereit DG, Hong TS, Tome W, Ritter MA. Phase I trial of pelvic nodal dose escalation with hypofractionated IMRT for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):184-90. doi: 10.1016/j.ijrobp.2010.09.018. Epub 2010 Dec 14. — View Citation
Al-Mamgani A, van Putten WL, Heemsbergen WD, van Leenders GJ, Slot A, Dielwart MF, Incrocci L, Lebesque JV. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):980-8. doi: 10.1016/j.ijrobp.2008.02.073. Epub 2008 May 19. — View Citation
Boike TP, Lotan Y, Cho LC, Brindle J, DeRose P, Xie XJ, Yan J, Foster R, Pistenmaa D, Perkins A, Cooley S, Timmerman R. Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. J Clin Oncol. 2011 May 20;29(15):2020-6. doi: 10.1200/JCO.2010.31.4377. Epub 2011 Apr 4. — View Citation
Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys. 2002 Jan 1;52(1):6-13. doi: 10.1016/s0360-3016(01)02664-5. — View Citation
D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998 Sep 16;280(11):969-74. doi: 10.1001/jama.280.11.969. — View Citation
Dearnaley DP, Sydes MR, Graham JD, Aird EG, Bottomley D, Cowan RA, Huddart RA, Jose CC, Matthews JH, Millar J, Moore AR, Morgan RC, Russell JM, Scrase CD, Stephens RJ, Syndikus I, Parmar MK; RT01 collaborators. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2007 Jun;8(6):475-87. doi: 10.1016/S1470-2045(07)70143-2. — View Citation
Demanes DJ, Rodriguez RR, Schour L, Brandt D, Altieri G. High-dose-rate intensity-modulated brachytherapy with external beam radiotherapy for prostate cancer: California endocurietherapy's 10-year results. Int J Radiat Oncol Biol Phys. 2005 Apr 1;61(5):1306-16. doi: 10.1016/j.ijrobp.2004.08.014. — View Citation
Deutsch I, Zelefsky MJ, Zhang Z, Mo Q, Zaider M, Cohen G, Cahlon O, Yamada Y. Comparison of PSA relapse-free survival in patients treated with ultra-high-dose IMRT versus combination HDR brachytherapy and IMRT. Brachytherapy. 2010 Oct-Dec;9(4):313-8. doi: 10.1016/j.brachy.2010.02.196. Epub 2010 Aug 4. — View Citation
Fowler J, Chappell R, Ritter M. Is alpha/beta for prostate tumors really low? Int J Radiat Oncol Biol Phys. 2001 Jul 15;50(4):1021-31. doi: 10.1016/s0360-3016(01)01607-8. — View Citation
Fowler JF, Ritter MA, Chappell RJ, Brenner DJ. What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys. 2003 Jul 15;56(4):1093-104. doi: 10.1016/s0360-3016(03)00132-9. — View Citation
Galalae RM, Kovacs G, Schultze J, Loch T, Rzehak P, Wilhelm R, Bertermann H, Buschbeck B, Kohr P, Kimmig B. Long-term outcome after elective irradiation of the pelvic lymphatics and local dose escalation using high-dose-rate brachytherapy for locally advanced prostate cancer. Int J Radiat Oncol Biol Phys. 2002 Jan 1;52(1):81-90. doi: 10.1016/s0360-3016(01)01758-8. — View Citation
Holmboe ES, Concato J. Treatment decisions for localized prostate cancer: asking men what's important. J Gen Intern Med. 2000 Oct;15(10):694-701. doi: 10.1046/j.1525-1497.2000.90842.x. — View Citation
Hoskin PJ, Motohashi K, Bownes P, Bryant L, Ostler P. High dose rate brachytherapy in combination with external beam radiotherapy in the radical treatment of prostate cancer: initial results of a randomised phase three trial. Radiother Oncol. 2007 Aug;84(2):114-20. doi: 10.1016/j.radonc.2007.04.011. Epub 2007 May 24. — View Citation
Jabbari S, Weinberg VK, Kaprealian T, Hsu IC, Ma L, Chuang C, Descovich M, Shiao S, Shinohara K, Roach M 3rd, Gottschalk AR. Stereotactic body radiotherapy as monotherapy or post-external beam radiotherapy boost for prostate cancer: technique, early toxicity, and PSA response. Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):228-34. doi: 10.1016/j.ijrobp.2010.10.026. Epub 2010 Dec 22. — View Citation
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90. doi: 10.3322/caac.20107. Epub 2011 Feb 4. Erratum In: CA Cancer J Clin. 2011 Mar-Apr;61(2):134. — View Citation
King C. Stereotactic body radiotherapy for prostate cancer: current results of a phase II trial. Front Radiat Ther Oncol. 2011;43:428-437. doi: 10.1159/000322507. Epub 2011 May 20. — View Citation
Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, Lee AK, Pollack A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008 Jan 1;70(1):67-74. doi: 10.1016/j.ijrobp.2007.06.054. Epub 2007 Aug 31. — View Citation
Mohler J, Bahnson RR, Boston B, Busby JE, D'Amico A, Eastham JA, Enke CA, George D, Horwitz EM, Huben RP, Kantoff P, Kawachi M, Kuettel M, Lange PH, Macvicar G, Plimack ER, Pow-Sang JM, Roach M 3rd, Rohren E, Roth BJ, Shrieve DC, Smith MR, Srinivas S, Twardowski P, Walsh PC. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw. 2010 Feb;8(2):162-200. doi: 10.6004/jnccn.2010.0012. No abstract available. — View Citation
Morton G, Loblaw A, Cheung P, Szumacher E, Chahal M, Danjoux C, Chung HT, Deabreu A, Mamedov A, Zhang L, Sankreacha R, Vigneault E, Springer C. Is single fraction 15 Gy the preferred high dose-rate brachytherapy boost dose for prostate cancer? Radiother Oncol. 2011 Sep;100(3):463-7. doi: 10.1016/j.radonc.2011.08.022. Epub 2011 Sep 14. — View Citation
Oermann EK, Slack RS, Hanscom HN, Lei S, Suy S, Park HU, Kim JS, Sherer BA, Collins BT, Satinsky AN, Harter KW, Batipps GP, Constantinople NL, Dejter SW, Maxted WC, Regan JB, Pahira JJ, McGeagh KG, Jha RC, Dawson NA, Dritschilo A, Lynch JH, Collins SP. A pilot study of intensity modulated radiation therapy with hypofractionated stereotactic body radiation therapy (SBRT) boost in the treatment of intermediate- to high-risk prostate cancer. Technol Cancer Res Treat. 2010 Oct;9(5):453-62. doi: 10.1177/153303461000900503. — View Citation
Pieters BR, de Back DZ, Koning CC, Zwinderman AH. Comparison of three radiotherapy modalities on biochemical control and overall survival for the treatment of prostate cancer: a systematic review. Radiother Oncol. 2009 Nov;93(2):168-73. doi: 10.1016/j.radonc.2009.08.033. Epub 2009 Sep 11. — View Citation
Ritter M, Forman J, Kupelian P, Lawton C, Petereit D. Hypofractionation for prostate cancer. Cancer J. 2009 Jan-Feb;15(1):1-6. doi: 10.1097/PPO.0b013e3181976614. — View Citation
Ritter MA, Forman JD, and Kupelian PA. A Phase I/II trial of increasingly hypofractionated radiation therapy for prostate cancer. International Journal of Radiation Oncology Biology Physics 75, 2009.
Vargas CE, Martinez AA, Boike TP, Spencer W, Goldstein N, Gustafson GS, Krauss DJ, Gonzalez J. High-dose irradiation for prostate cancer via a high-dose-rate brachytherapy boost: results of a phase I to II study. Int J Radiat Oncol Biol Phys. 2006 Oct 1;66(2):416-23. doi: 10.1016/j.ijrobp.2006.04.045. Epub 2006 Jul 31. — View Citation
Zietman AL, Bae K, Slater JD, Shipley WU, Efstathiou JA, Coen JJ, Bush DA, Lunt M, Spiegel DY, Skowronski R, Jabola BR, Rossi CJ. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol. 2010 Mar 1;28(7):1106-11. doi: 10.1200/JCO.2009.25.8475. Epub 2010 Feb 1. — View Citation
* Note: There are 25 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Dose limiting toxicities (DLT) graded according to the National Cancer Institute, Common Toxicity Criteria (NCI, CTC), v 4.0 | Data analysis of phase I studies is descriptive. All estimates of dose-specific rates (e.g., response and toxicity) will be presented with corresponding confidence intervals using the exact method. | Up to 3 months | |
Secondary | Late nonhematologic toxicity profile | The secondary endpoint is to assess the late nonhematologic toxicity profile and the acute and late hematologic toxicity profile of HDR and SBRT combination. The dosimetric parameters, including dose-volume factors for bladder and rectum, will be correlated with acute toxicity. Multiple patient reported outcome instruments will be used including EPIC, AUA symptom score. | Up to 5 years | |
Secondary | Acute and late hematologic toxicity profile of HDR and SBRT combination | The secondary endpoint is to assess the late nonhematologic toxicity profile and the acute and late hematologic toxicity profile of HDR and SBRT combination. The dosimetric parameters, including dose-volume factors for bladder and rectum, will be correlated with acute toxicity. Multiple patient reported outcome instruments will be used including EPIC, AUA symptom score. | Up to 5 years | |
Secondary | Correlation of dosimetric parameters, including dose-volume factors for bladder and rectum, with acute toxicity | The secondary endpoint is to assess the late nonhematologic toxicity profile and the acute and late hematologic toxicity profile of HDR and SBRT combination. The dosimetric parameters, including dose-volume factors for bladder and rectum, will be correlated with acute toxicity. Multiple patient reported outcome instruments will be used including EPIC, AUA symptom score. | Up to 5 years | |
Secondary | Patient-reported outcomes, assessed by EPIC and AUA symptom score | The secondary endpoint is to assess the late nonhematologic toxicity profile and the acute and late hematologic toxicity profile of HDR and SBRT combination. The dosimetric parameters, including dose-volume factors for bladder and rectum, will be correlated with acute toxicity. Multiple patient reported outcome instruments will be used including EPIC, AUA symptom score. | Up to 5 years |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05540392 -
An Acupuncture Study for Prostate Cancer Survivors With Urinary Issues
|
Phase 1/Phase 2 | |
Recruiting |
NCT05613023 -
A Trial of 5 Fraction Prostate SBRT Versus 5 Fraction Prostate and Pelvic Nodal SBRT
|
Phase 3 | |
Recruiting |
NCT05156424 -
A Comparison of Aerobic and Resistance Exercise to Counteract Treatment Side Effects in Men With Prostate Cancer
|
Phase 1/Phase 2 | |
Completed |
NCT03177759 -
Living With Prostate Cancer (LPC)
|
||
Completed |
NCT01331083 -
A Phase II Study of PX-866 in Patients With Recurrent or Metastatic Castration Resistant Prostate Cancer
|
Phase 2 | |
Recruiting |
NCT05540782 -
A Study of Cognitive Health in Survivors of Prostate Cancer
|
||
Active, not recruiting |
NCT04742361 -
Efficacy of [18F]PSMA-1007 PET/CT in Patients With Biochemial Recurrent Prostate Cancer
|
Phase 3 | |
Completed |
NCT04400656 -
PROState Pathway Embedded Comparative Trial
|
||
Completed |
NCT02282644 -
Individual Phenotype Analysis in Patients With Castration-Resistant Prostate Cancer With CellSearch® and Flow Cytometry
|
N/A | |
Recruiting |
NCT06037954 -
A Study of Mental Health Care in People With Cancer
|
N/A | |
Recruiting |
NCT06305832 -
Salvage Radiotherapy Combined With Androgen Deprivation Therapy (ADT) With or Without Rezvilutamide in the Treatment of Biochemical Recurrence After Radical Prostatectomy for Prostate Cancer
|
Phase 2 | |
Recruiting |
NCT05761093 -
Patient and Physician Benefit/ Risk Preferences for Treatment of mPC in Hong Kong: a Discrete Choice Experiment
|
||
Completed |
NCT04838626 -
Study of Diagnostic Performance of [18F]CTT1057 for PSMA-positive Tumors Detection
|
Phase 2/Phase 3 | |
Recruiting |
NCT03101176 -
Multiparametric Ultrasound Imaging in Prostate Cancer
|
N/A | |
Completed |
NCT03290417 -
Correlative Analysis of the Genomics of Vitamin D and Omega-3 Fatty Acid Intake in Prostate Cancer
|
N/A | |
Completed |
NCT00341939 -
Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
|
||
Completed |
NCT01497925 -
Ph 1 Trial of ADI-PEG 20 Plus Docetaxel in Solid Tumors With Emphasis on Prostate Cancer and Non-Small Cell Lung Cancer
|
Phase 1 | |
Recruiting |
NCT03679819 -
Single-center Trial for the Validation of High-resolution Transrectal Ultrasound (Exact Imaging Scanner ExactVu) for the Detection of Prostate Cancer
|
||
Completed |
NCT03554317 -
COMbination of Bipolar Androgen Therapy and Nivolumab
|
Phase 2 | |
Completed |
NCT03271502 -
Effect of Anesthesia on Optic Nerve Sheath Diameter in Patients Undergoing Robot-assisted Laparoscopic Prostatectomy
|
N/A |