View clinical trials related to Prolymphocytic Leukemia.
Filter by:This is a treatment guideline for an unrelated umbilical cord blood transplant (UCBT) using a myeloablative preparative regimen for the treatment of hematological diseases, including, but not limited to acute leukemias. The myeloablative preparative regimen will consist of cyclophosphamide (CY), fludarabine (FLU) and fractionated total body irradiation (TBI).
RATIONALE: Placing a tumor antigen chimeric receptor that has been created in the laboratory into patient autologous or donor-derived T cells may make the body build immune response to kill cancer cells. PURPOSE: This clinical trial is studying genetically engineered lymphocyte therapy in treating patients with B-cell leukemia or lymphoma that is relapsed (after stem cell transplantation or intensive chemotherapy) or refractory to chemotherapy.
RATIONALE: Placing a gene that has been created in the laboratory into white blood cells may make the body build an immune response to kill cancer cells. PURPOSE: This clinical trial is studying genetically engineered lymphocyte therapy in treating patients with B-cell leukemia or lymphoma that is resistant or refractory to chemotherapy.
This phase I/II trial studies the best dose and side effects of gemcitabine and how well it works with clofarabine and busulfan and donor stem cell transplant in treating participants with chronic lymphocytic leukemia. Drugs used in chemotherapy, such as gemcitabine, clofarabine, and busulfan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells.
This is a Phase II, single institution open-label, non-randomized monotherapy study to evaluate the clinical efficacy and durable disease control of PCI-32765 administered to patients with relapsed/refractory CLL/SLL/PLL of all risk categories with patients having deletion 17p13 independently evaluated.
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This pilot clinical trial studies mechanical stimulation in preventing bone density loss in patients undergoing donor stem cell transplant. Mechanical stimulation may limit, prevent, or reverse bone loss, increase muscle and cardiac performance, and improve overall health
This phase II trial studies how well donor atorvastatin treatment works in preventing severe graft-versus-host disease (GVHD) after nonmyeloablative peripheral blood stem cell (PBSC) transplant in patients with hematological malignancies. Giving low doses of chemotherapy, such as fludarabine phosphate, before a donor PBSC transplantation slows the growth of cancer cells and may also prevent the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also cause an immune response against the body's normal cells (GVHD). Giving atorvastatin to the donor before transplant may prevent severe GVHD.
This phase I/II trial studies the side effects and the best dose of ofatumumab and dinaciclib and to see how well they work in treating patients with relapsed or refractory chronic lymphocytic leukemia, small lymphocytic lymphoma, or B-cell prolymphocytic leukemia. Monoclonal antibodies, such as ofatumumab, can find cancer cells and help kill them. Dinaciclib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving ofatumumab together with dinaciclib may kill more cancer cells.
This randomized pilot clinical trial studies how well giving prolonged infusion compared to standard infusion of cefepime hydrochloride works in treating patients with febrile neutropenia. Giving cefepime hydrochloride over a longer period of time may be more effective than giving cefepime hydrochloride over the standard time.