Clinical Trials Logo

Prolymphocytic Leukemia clinical trials

View clinical trials related to Prolymphocytic Leukemia.

Filter by:

NCT ID: NCT01419795 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

Lenalidomide With or Without Rituximab in Treating Patients With Progressive or Relapsed Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, Prolymphocytic Leukemia, or Non-Hodgkin Lymphoma Previously Treated With Donor Stem Cell Transplant

Start date: May 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well giving lenalidomide with or without rituximab works in treating patients with progressive or relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), prolymphocytic leukemia (PLL), or non-Hodgkin lymphoma (NHL). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with or without rituximab may kill more cancer cells.

NCT ID: NCT01254578 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Lenalidomide After Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancers

Start date: November 24, 2010
Phase: Phase 1
Study type: Interventional

This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.

NCT ID: NCT01251575 Completed - Clinical trials for Chronic Lymphocytic Leukemia

Sirolimus, Cyclosporine, and Mycophenolate Mofetil in Preventing Graft-versus-Host Disease in Treating Patients With Blood Cancer Undergoing Donor Peripheral Blood Stem Cell Transplant

Start date: December 1, 2010
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well sirolimus, cyclosporine and mycophenolate mofetil works in preventing graft-vs-host disease (GVHD) in patients with blood cancer undergoing donor peripheral blood stem cell (PBSC) transplant. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with sirolimus, cyclosporine, and mycophenolate mofetil before and after transplant may stop this from happening.

NCT ID: NCT01231919 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia

Start date: January 2011
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01231412 Completed - Clinical trials for Acute Myeloid Leukemia

Graft-Versus-Host Disease Prophylaxis in Treating Patients With Hematologic Malignancies Undergoing Unrelated Donor Peripheral Blood Stem Cell Transplant

Start date: November 2010
Phase: Phase 3
Study type: Interventional

This randomized phase III trial studies how well graft-vs-host disease (GVHD) prophylaxis works in treating patients with hematologic malignancies undergoing unrelated donor peripheral blood stem cell transplant. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant (PBSCT) helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation (TBI) together with fludarabine phosphate (FLU), cyclosporine (CSP), mycophenolate mofetil (MMF), or sirolimus before transplant may stop this from happening.

NCT ID: NCT01212380 Completed - Clinical trials for Recurrent Small Lymphocytic Lymphoma

Study of Carfilzomib in Chronic Lymphocytic Leukemia (CLL), Small Lymphocytic Lymphoma (SLL) or Prolymphocytic Leukemia (PLL)

Start date: October 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: Carfilzomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and the best dose of carfilzomib in treating patients with relapsed or refractory chronic lymphocytic leukemia(CLL),small lymphocytic lymphoma(SLL), or prolymphocytic leukemia (PLL).

NCT ID: NCT01199562 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Infection Prophylaxis and Management in Treating Cytomegalovirus (CMV) Infection in Patients With Hematologic Malignancies Previously Treated With Donor Stem Cell Transplant

Start date: December 2010
Phase:
Study type: Observational

RATIONALE: Infection prophylaxis and management may help prevent cytomegalovirus (CMV) infection caused by a stem cell transplant. PURPOSE:This clinical trial studies infection prophylaxis and management in treating cytomegalovirus infection in patients with hematologic malignancies previously treated with donor stem cell transplant.

NCT ID: NCT01129193 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

AR-42 in Treating Patients With Advanced or Relapsed Multiple Myeloma, Chronic Lymphocytic Leukemia, or Lymphoma

Start date: May 4, 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.

NCT ID: NCT01129180 Completed - Clinical trials for Peripheral T-cell Lymphoma

Bortezomib and Azacitidine in Treating Patients With Relapsed or Refractory T-Cell Lymphoma

Start date: May 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: Bortezomib and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of bortezomib when given together with azacitidine in treating patients with relapsed or refractory T-cell lymphoma.

NCT ID: NCT01126502 Terminated - Clinical trials for Recurrent Small Lymphocytic Lymphoma

Alvespimycin Hydrochloride in Treating Patients With Relapsed Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, or B-Cell Prolymphocytic Leukemia

Start date: May 2010
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and the best dose of alvespimycin hydrochloride in treating patients with relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), or B-cell prolymphocytic leukemia (B-PLL). Drugs used in chemotherapy, such as alvespimycin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.