View clinical trials related to Pneumonia, Viral.
Filter by:A phase1/2, open label, dose escalation, safety and early efficacy study of CAStem for the treatment of severe COVID-19 associated with or without ARDS.
Rationale: The clinical manifestations of SARS-CoV-2 infection in children are poorly characterized. Preliminary findings indicate that they may be atypical. There is a need to identify the spectrum of clinical presentations, predictors of severe disease (COVID-19) outcomes, and successful treatment strategies in this population. Goals: Primary - Describe and compare characteristics of confirmed SARS-CoV-2 infected children with symptomatic test-negative children. Secondary - 1) Describe and compare confirmed SARS-CoV-2 infected children with mild versus severe COVID-19 outcomes; 2) Describe healthcare resource utilization for, and outcomes of, screening and care of pediatric COVID-19 internationally, alongside regional public health policy changes. Methods: This prospective observational study will occur in 50 emergency departments across 11 countries. We will enroll 12,500 children who meet institutional screening guidelines and undergo SARS-CoV-2 testing. Data collection focuses on epidemiological risk factors, demographics, signs, symptoms, interventions, laboratory testing, imaging, and outcomes. Collection will occur at enrollment, 14 days, and 90 days. Timeline: Recruitment will last for 12 months (worst-case model) and will begin within 7-14 days of funding notification after ongoing expedited review of ethics and data sharing agreements. Impact: Results will be shared in real-time with key policymakers, enabling rapid evidence-based adaptations to pediatric case screening and management.
The Severe Acute Respiratory Syndrome COronaVirus 2 (SARS-CoV2) is a new and recognized infectious disease of the respiratory tract. Most cases are mild or asymptomatic. However, around 5% of all patients develop Acute Respiratory Distress Syndrome (ARDS), which is the leading mortality cause in these patients. Corticosteroids have been tested in deferent scenarios of ARDS, including viral pneumonia, and the early use of dexamethasone is safe and appears to reduce the duration of mechanical ventilation in ARDS patients. Nevertheless, no large, randomized, controlled trial was performed evaluating the role of corticosteroids in patients with ARDS due SARS-CoV2 virus. Therefore, the present study will evaluate the effectiveness of dexamethasone compared to control (no corticosteroids) in patients with moderate and severe ARDS due to SARS-CoV2 virus.
COVID-19 Viral Global Pandemic resulting in post-infection pulmonary damage, including Fibrotic Lung Disease due to inflammatory and reactive protein secretions damaging pulmonary alveolar structure and functionality. A short review includes: - Early December, 2019 - A pneumonia of unknown cause was detected in Wuhan, China, and was reported to the World Health Organization (WHO) Country Office. - January 30th, 2020 - The outbreak was declared a Public Health Emergency of International Concern. - February 7th, 2020 - 34-year-old Ophthalmologist who first identified a SARS-like coronavirus) dies from the same virus. - February 11th, 2020 - WHO announces a name for the new coronavirus disease: COVID-19. - February 19th, 2020 - The U.S. has its first outbreak in a Seattle nursing home which were complicated with loss of lives.. - March 11th, 2020 - WHO declares the virus a pandemic and in less than three months, from the time when this virus was first detected, the virus has spread across the entire planet with cases identified in every country including Greenland. - March 21st, 2020 - Emerging Infectious Disease estimates the risk for death in Wuhan reached values as high as 12% in the epicenter of the epidemic and ≈1% in other, more mildly affected areas. The elevated death risk estimates are probably associated with a breakdown of the healthcare system, indicating that enhanced public health interventions, including social distancing and movement restrictions, should be implemented to bring the COVID-19 epidemic under control." March 21st 2020 -Much of the United States is currently under some form of self- or mandatory quarantine as testing abilities ramp up.. March 24th, 2020 - Hot spots are evolving and identified, particularly in the areas of New York-New Jersey, Washington, and California. Immediate attention is turned to testing, diagnosis, epidemiological containment, clinical trials for drug testing started, and work on a long-term vaccine started. The recovering patients are presenting with mild to severe lung impairment as a result of the viral attack on the alveolar and lung tissues. Clinically significant impairment of pulmonary function appears to be a permanent finding as a direct result of the interstitial lung damage and inflammatory changes that accompanied. This Phase 0, first-in-kind for humans, is use of autologous, cellular stromal vascular fraction (cSVF) deployed intravenously to examine the anti-inflammatory and structural potential to improve the residual, permanent damaged alveolar tissues of the lungs.
It has been reported that nearly half of the patients who are hospitalized for Covid-19 pneumonia have on admission old age or comorbidities. In particular, hypertension was present in 30% of the cases, diabetes in 19%, coronary heart disease in 8% and chronic obstructive lung disease in 3% of the patients. Amazingly, in the two major studies published in the Lancet (Zhou F et al Lancet 2020) and in the New England Journal of Medicine (Guan W et al 2020), the weight of the subjects as well their body mass index (BMI) were omitted. However, obesity, alone or in association with diabetes, can be a major predisposition factor for Covid-19 infection. The primary end-point of our prospective, observational study is to assess the recovery rate in patients with diagnosis of Covid-19 pneumonia. Among the other secondary end-points, we intend to find the predictors of the time to clinical improvement or hospital discharge in patients affected by Covid-19 pneumonia.
Cytokines and chemokines are thought to play an important role in immunity and immunopathology during virus infections [3]. Patients with severe COVID-19 have higher serum levels of pro-inflammatory cytokines (TNF-α, IL-1 and IL-6) and chemokines (IL-8) compared to individuals with mild disease or healthy controls, similar to patients with SARS or MERS . The change of laboratory parameters, including elevated serum cytokine, chemokine levels, and increased NLR in infected patients are correlated with the severity of the disease and adverse outcome, suggesting a possible role for hyper-inflammatory responses in COVID-19 pathogenesis. Importantly, previous studies showed that viroporin E, a component of SARS-associated coronavirus (SARS-CoV), forms Ca2C-permeable ion channels and activates the NLRP3 inflammasome. In addition, another viroporin 3a was found to induce NLRP3 inflammasome activation . The mechanisms are unclear. Colchicine, an old drug used in auto-inflammatory disorders (i.e., Familiar Mediterranean Fever and Bechet disease) and in gout, counteracts the assembly of the NLRP3 inflammasome, thereby reducing the release of IL-1b and an array of other interleukins, including IL-6, that are formed in response to danger signals. Recently, colchicine has been successfully used in two cases of life-threatening post-transplant capillary leak syndrome. These patients had required mechanically ventilation for weeks and hemodialysis, before receiving colchicine, which abruptly restored normal respiratory function and diuresis over 48 hrs [4].
Growing evidences are showing the usefulness of lung ultrasound in patients with COVID-19. Sars-CoV-2 has now spread in almost every country in the world. In this study, the investigators share their experience and propose a standardized approach in order to optimize the use of lung ultrasound in covid-19 patients. The investigators focus on equipment, procedure, classification and data-sharing.
The Severe Acute Respiratory Syndrome COronaVirus 2 (SARS-CoV2) is a new and recognized infectious disease of the respiratory tract. Around 20% of those infected have severe pneumonia and currently there is no specific or effective therapy to treat this disease. Therapeutic options using malaria drugs chloroquine and hydroxychloroquine have shown promising results in vitro and in vivo test. But those efforts have not involved large, carefully-conducted controlled studies that would provide the global medical community the proof that these drugs work on a significant scale. In this way, the present study will evaluate the effectiveness and safety of the use of hydroxychloroquine combined with azithromycin compared to hydroxychloroquine monotherapy in patients hospitalized with pneumonia by SARS-CoV2 virus.
This project aims to use artificial intelligence (image discrimination) algorithms, specifically convolutional neural networks (CNNs) for scanning chest radiographs in the emergency department (triage) in patients with suspected respiratory symptoms (fever, cough, myalgia) of coronavirus infection COVID 19. The objective is to create and validate a software solution that discriminates on the basis of the chest x-ray between Covid-19 pneumonitis and influenza
The scientific community is in search for novel therapies that can help to face the ongoing epidemics of novel Coronavirus (SARS-Cov-2) originated in China in December 2019. At present, there are no proven interventions to prevent progression of the disease. Some preliminary data on SARS pneumonia suggest that inhaled Nitric Oxide (NO) could have beneficial effects on SARS-CoV-2 due to the genomic similarities between this two coronaviruses. In this study we will test whether inhaled NO therapy prevents progression in patients with mild to moderate COVID-19 disease.