View clinical trials related to Paralysis.
Filter by:The purpose of this study is to test the safety of placing Deep Brain Stimulators (DBS) in a part of the brain called the cerebellum and using electrical stimulation of that part of the brain to treat movement symptoms related to cerebral palsy. Ten children and young adults with dyskinetic cerebral palsy will be implanted with a Medtronic Percept Primary Cell Neurostimulator. We will pilot videotaped automated movement recognition techniques and formal gait analysis, as well as collect and characterize each subject's physiological and neuroimaging markers that may predict hyperkinetic pathological states and their response to therapeutic DBS.
ORION Trial is a trial to evaluate the efficacy and safety of AMX0035 in participants with Progressive Supranuclear Palsy (PSP), consisting of a randomized double blind placebo controlled phase, followed by an optional open-label extension phase.
Cerebral Palsy (CP) is the most common developmental disorder in childhood. Individuals' independence in daily living activities and participation in education, games, social and community activities are restricted. Technology applications in the field of rehabilitation are gaining momentum. EXOPULSE Mollii Suit method, one of the newest rehabilitation technology products, is a non-invasive neuromodulation approach with a garment that covers the whole body and electrodes placed inside. Designed to improve motor function by reducing spasticity and pain, the method is based on the principle of reciprocal inhibition, which occurs by stimulating the antagonist of a spastic muscle at low frequencies and intensities. Therefore, the aim of our study is to examine the effectiveness of the Mollii Suit application on gross and fine motor function, spasticity severity, balance, walking, selective motor control, postural control, daily living activities, quality of life, pain and sleep quality in individuals with ambulatory spastic CP.
The present clinical investigation - EarlyExo, is an interventional, international, multicentric, prospective, single-blinded randomized controlled trial. This clinical investigation is designed to test the hypothesis that early and intense introduction of walking sessions assisted by the Atalante exoskeleton, in a sample of hemiparetic patients with still non or poor ambulatory capacities (FAC 0 or 1) between one- and four-months post stroke, would result in a better recovery of functional walking compared to a control group only receiving conventional therapy. Improved recovery will be measured through the proportion of patients reaching a FAC score of 4 or higher at the end of the intervention period. The tested hypothesis is that this proportion will be higher in the Exo group. The duration of the intervention period in both groups is 6 weeks. - For the Exo group: 3 sessions per week (i.e., 18 one-hour sessions) with the Atalante device and 2 sessions per week (i.e., 12 one-hour sessions) of conventional therapy. - For the Control group: 5 sessions per week of conventional therapy (i.e., 30 one-hour sessions). The study will include 66 patients (33 in each arm) and takes place in two French centers, two German centers and one Spanish center.
A new artificial intelligence network has been developed to monitor real-world daytime and nighttime movement behavior of adolescents with cerebral palsy (CP). The network uses seven wearable sensors to recognize lying, sitting, and standing, as well as walking and movements of both arms and legs. This information can be useful for healthcare professionals to understand and influence change in movement behavior, leading to benefits for the health of adolescents with cerebral palsy. This study aims to examine the acceptability and technical dependability of monitoring the movement behavior of adolescents with cerebral palsy for 72 hours using wearable sensors. Additionally, the study aims to evaluate the network's ability to discriminate between control and individuals with CP, different subgroups of individuals with CP, as well as the incidence of sleep disturbance in the entire cohort.
Cerebral palsy (CP) is a non-progressive neurological disorder characterized by a persistent decline in sensory, cognitive or especially gross and fine motor functions during infancy or early childhood. In children with spastic CP, spasticity, muscle weakness, delay in motor development, inadequacy of gross and fine motor skills, selective motor control and functional capacity may be affected. Selective motor control (SMC) is the ability to isolate a muscle or muscle group to perform a specific movement. In children with CP, spasticity directly causes impairment of SMC, as movement patterns governed by flexor or extensor synergies are affected, which inhibits functional movements. Motor dysfunction in CP causes activity limitations and can negatively affect functional capacity. In addition, falls may increase in individuals with CP due to poor balance control, resulting in pain, injury and disability, and may cause individuals to lose confidence in their ability to perform routine activities. Increased fear of falling in individuals with CP may also lead to restriction of activities.It was discussed that the interactive computer game has possible evidence of efficacy allowing to improve gross motor function in individuals with CP. It also appears to have the potential to produce gross motor improvements in terms of strength, balance, coordination and gait for individuals with CP.As a result of our literature review, studies investigating the effect of virtual reality games on gait, balance and coordination in children with CP were observed. However, the effect of virtual reality games on selective motor control has not been sufficiently investigated. The aim of our study, which is planned to eliminate this deficiency in the literature, is to investigate the effect of video game-based exercise training, which provides higher motivation than conventional physical therapy methods, on selective motor control, fear of falling and functional capacity in individuals with CP.
This is a single-center, open-label clinical study. Up to 11 subjects will be enrolled to use the Neuro-trigger device for blinking stimulation for a duration of 14 days.
The goal of this clinical trial is to learn about the acceptability and efficacy of Go Move, a mobile website developed to assist youth with unilateral cerebral palsy and their caregivers with setting goals and selecting exercises and activities to meet the goals. The main question[s] it aims to answer are: - Is Go Move accepted by youth with unilateral cerebral palsy and their caregivers? - Does Go Move support goal attainment for youth with unilateral cerebral palsy? Participants will set up and participate in a goal-driven home program using the Go Move mobile website. Participants will spend 1 hour and 15 minutes per week for 6 weeks working on their home program and will complete pre-intervention and post-intervention assessments.
Bell's palsy, also called idiopathic facial paralysis, is a common cause of unilateral facial paralysis. It is one of the most common neurological disorders of the cranial nerves.
The objective of this current study is to determine the combined effects of Low-Level Laser Therapy (LLLT) and the Kabat technique on quality of life, synkinetic movements and functional outcome in patients of Bell's palsy