View clinical trials related to Paraganglioma.
Filter by:This phase I trial studies the side effects and best dose of modified immune cells (IL13Ralpha2 CAR T cells) after a chemotherapy conditioning regimen for the treatment of patients with stage IIIC or IV melanoma or solid tumors that have spread to other places in the body (metastatic). The study agent is called IL13Ralpha2 CAR T cells. T cells are a special type of white blood cell (immune cells) that have the ability to kill tumor cells. The T cells are obtained from the patient's own blood, grown in a laboratory, and modified by adding the IL13Ralpha2 CAR gene. The IL13Ralpha2 CAR gene is inserted into T cells with a virus called a lentivirus. The lentivirus allows cells to make the IL13Ralpha2 CAR protein. This CAR has been designed to bind to a protein on the surface of tumor cells called IL13Ralpha2. This study is being done to determine the dose at which the gene-modified immune cells are safe, how long the cells stay in the body, and if the cells are able to attack the cancer.
This phase II trial studies how well 177Lu-DOTATATE works in treating patients with rare endocrine cancers that have spread from where they started to nearby tissue or lymph nodes (locally advanced), spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Radioactive drugs, such as 177Lu-DOTATATE, may carry radiation directly to cancer cells and not harm normal cells. 177Lu-DOTATATE may help to control endocrine cancers compared to standard treatment.
The study population consists of patients who undergo resection for somatostatin receptor-positive (SSTR-positive) CNS tumors, focusing on meningioma, and including esthesioneuroblastoma, hemangioblastoma, medulloblastoma, paraganglioma, pituitary adenoma, and SSTR-positive systemic cancers metastatic to the brain, such as small cell carcinoma of the lung. The study indication is to determine the diagnostic utility of 68Ga-DOTATATE PET/MRI in the diagnosis and management of patients with SSTR-positive CNS tumors, specifically whether 68Ga-DOTATATE PET/MRI demonstrates utility distinguishing between tumor recurrence and post-treatment change. To date, the utility of Ga-68-DOTATATE PET/MRI in meningioma has not been explored. Investigators have over the past 3 months been able to accrue the largest case series of presently 12 patients in whom Ga-68-DOTATATE PET/MRI demonstrated utility in the assessment of meningioma, including assessment for postsurgical/postradiation recurrence, detection of additional lesions not visualized on MRI alone, and evaluation of osseous invasion. Based on this initial experience, investigators intend to study the impact of Ga-68-DOTATATE PET/MRI in the assessment of the extent of residual tumor in patients status post meningioma resection, specifically in patients in whom tumor location limits resectability, patients with World Health Organization (WHO) grade II/III disease, and patients with history of stereotactic radiosurgery (SRS) who develop postradiation change.
Quantitative parameters obtained with dynamic whole body imaging using positron emission tomography (PET) can provide additional and complementary information to standard PET. Dynamic imaging allows for better understanding of the behavior of the radio-pharmaceutical because it can be followed over time. Thought to be difficult to perform with currently available clinical equipment that can affect the clinical workflow, it has recently shown to be feasible. We want to test the feasibility of this imaging technique and evaluate its utility in identifying lesions with three different radio-pharmaceuticals as compared to standard static PET. This study will also determine the clinical impact of DWB PET on participant management by comparing the overall qualitative assessment performed by nuclear medicine physicians between the standard PET images and the DWB ones.
The objectives of this study are: - To assess the efficacy of lanreotide given every 4 weeks in participants with advanced or metastatic paraganglioma/ pheochromocytoma. - To assess the toxicity and safety of lanreotide in participants with advanced or metastatic paraganglioma/ pheochromocytoma. - To document the effects of lanreotide on markers of biochemical activity in participants with advanced or metastatic paraganglioma/ pheochromocytoma. Primary endpoints: • Assess efficacy by estimating the tumor growth rate while a patient is enrolled on study and comparing the growth rates on lanreotide to the pre-enrolment growth rate. Secondary endpoints include measurement of: - Overall survival (OS) - Progression-free survival (PFS) - Overall response rate (ORR) according to RECIST defined as partial response (PR) + complete response (CR) - Magnitude of reduction in levels of 24-hour urinary metanephrines, catecholamines and magnitude of reduction in serum chromogranin A, evaluated every two months while enrolled on study.
This is a Phase I/II peptide receptor radiotherapy (PRRT) trial of 177Lu-DOTA-OCTREOTATE in children and adolescents with neuroendocrine tumors and pheochromocytoma or paraganglioma.
Primary Objective: To determine the response rate (RR) of metastatic or locally advanced pheochromocytoma/paraganglioma to axitinib administered daily. Secondary Objectives: - Determine the progression-free survival. - In an exploratory manner examine the extent of activation of the VEGFR pathway in pheochromocytoma/paraganglioma using a semi-quantitative immunohistochemistry assay and examine the relationship with response to therapy. - Perform pharmacogenomics analyses of drug metabolism and transport proteins through germline DNA examination.
Neuroendocrine tumours (NETs) are generally slow growing, but some can be aggressive and resistant to treatment. Compared to healthy cells, the surface of these tumor cells has a greater number of special molecules called somatostatin receptors (SSTR). Somatostatin receptor scintigraphy and conventional imaging are used to detect NETs. This study proposes 68Gallium(68Ga)-DOTATOC positron emission tomography/computed tomography (PET/CT) is superior to current imaging techniques. The goal is to evaluate the safety and sensitivity of 68Ga-DOTATOC PET/CT at detecting NETs and other tumors with over-expression of somatostatin receptors.
Target population: Patients with (1) newly diagnosed or (2) past history of pheochromocytomas and paragangliomas (PPGL) or (3) carrier of genetic mutations in known PPGL susceptibility genes. International multicenter prospective cohort study with randomized intervention (special care follow-up vs. standard care follow-up). All patients will receive instructions about follow-up at the time point of study inclusion. Patients randomized to the standard care follow-up group will be advised to return annually for follow-up according to current routine practice (without active re-scheduling). In contrast, patients randomized to the special care follow-up group will also be advised to return annually for follow-up but these patients will be actively invited, re-scheduled and reminded by the centers to meet scheduled follow-up appointments.
Background: Pheochromocytoma and paraganglioma are rare tumors. They usually form inside and near the adrenal gland or in the neck region. Not all these tumors can be removed with surgery, and there are no good treatments if the disease has spread. Researchers think a new drug may be able to help. Objective: To learn the safety and tolerability of Lu-177-DOTATATE. Also, to see if it improves the length of time it takes for the cancer to return. Eligibility: Adults who have an inoperable tumor of the study cancer that can be detected with Ga-68-DOTATATE PET/CT imaging Design: Participants will be screened with a medical history, physical exam, and blood tests. Eligible participants will be admitted to the NIH Clinical Center. Participants will get the study drug in an intravenous infusion. They will get 4 doses, given about 8 weeks apart. Between 4 and 24 hours after each study drug dose, participants will have scans taken. They will lie on their back on a scanner table. Participants will have vital signs taken. They will give blood and urine samples. During the study, participants will have other scans taken. Some scans will use a radioactive tracer. Participants will complete quality of life questionnaires. Participants will be contacted by phone 1-3 days after they leave the Clinical Center. They will then be followed every 3 to 6 months for 3 years or until their disease gets worse.