Clinical Trials Logo

Paraganglioma clinical trials

View clinical trials related to Paraganglioma.

Filter by:

NCT ID: NCT03176693 Completed - Pheochromocytoma Clinical Trials

Preoperative Alpha Blockade for Pheochromocytoma

Start date: May 5, 2017
Phase: Phase 3
Study type: Interventional

Pheochromocytoma is a rare, catecholamine (ex. adrenaline) secreting tumor that requires preoperative alpha blockade to minimize intraoperative hemodynamic instability, thereby reducing intra- and postoperative morbidity and mortality. Phenoxybenzamine is a non-selective alpha blocker that is significantly more expensive and is associated with increased adverse effects in comparison with selective alpha blockers such as doxazosin. Retrospective studies show minimal differences in hemodynamic instability and no differences in postoperative morbidity and mortality between selective vs. non-selective alpha blockers. This study is a randomized controlled trial that will compare hemodynamic instability, morbidity, mortality, cost, and quality of life between patients blocked with phenoxybenzamine vs. doxazosin.

NCT ID: NCT03165721 Terminated - Clinical trials for Carcinoma, Renal Cell

A Phase II Trial of the DNA Methyl Transferase Inhibitor, Guadecitabine (SGI-110), in Children and Adults With Wild Type GIST,Pheochromocytoma and Paraganglioma Associated With Succinate Dehydrogenase Deficiency and HLRCC-associated Kidney Cancer

Start date: August 16, 2017
Phase: Phase 2
Study type: Interventional

Background: Wild-type gastrointestinal stromal tumor (GIST) is a cancer in the esophagus, stomach, or intestines. It does not respond well to standard chemotherapy or radiation therapy. Most people with GIST are treated with imatinib. But it may not work in many children with GIST. Researchers think the drug SGI-110 may help treat people with GIST, pheochromocytoma and paraganglioma (PHEO/PGL), or kidney cancer related to hereditary leiomyomatosis and renal cell carcinoma (HLRCC). Objective: To learn if SGI-110 causes GIST tumors to shrink or slows their growth. Also to test how it acts in the body. Eligibility: People ages 12 and older who have GIST, PHEO/PGL, or HLRCC that has not responded to other treatments Design: Participants will be screened with: - Physical exam - Urine tests - Computed tomography (CT) or magnetic resonance imaging (MRI), or fluorodeoxyglucose (FDG)-positron emission tomography (PET) scan: A machine takes pictures of the body. - Blood tests Participants will be injected with SGI-110 under the skin each day for 5 days. This cycle will repeat every 28 days. The cycles repeat until their side effects get too bad or their cancer gets worse. Participants will have tests throughout study: - Physical exam and blood and urine tests before each cycle - Blood tests on days 1, 7, 14, and 28 of the first cycle. - Scans before cycle 1 and then every other cycle. - Questionnaires about their pain and quality of life - Tumor biopsy for those 18 and older: A needle removes a small piece of tumor. After they stop treatment, participants will have a final visit. This includes an evaluation of their health, pain, and quality of life. ...

NCT ID: NCT03160274 Recruiting - Pheochromocytoma Clinical Trials

Genetic Analysis of Pheochromocytomas, Paragangliomas and Associated Conditions

Start date: October 19, 2005
Phase:
Study type: Observational [Patient Registry]

Pheochromocytomas and paragangliomas are neural crest-derived tumors of the nervous system that are often inherited and genetically heterogeneous. Genetic screening is recommended for patients and their relatives, and can guide clinical decisions. However, a mutation is not found in all cases. The aims of this proposal are to: 1) to map gene(s) involved in pheochromocytoma, and 2) identify genotype-phenotype correlations in patients with pheochromocytoma/paraganglioma of various genetic origins.

NCT ID: NCT03050268 Recruiting - Pancreatic Cancer Clinical Trials

Familial Investigations of Childhood Cancer Predisposition

SJFAMILY
Start date: April 6, 2017
Phase:
Study type: Observational

NOTE: This is a research study and is not meant to be a substitute for clinical genetic testing. Families may never receive results from the study or may receive results many years from the time they enroll. If you are interested in clinical testing please consider seeing a local genetic counselor or other genetics professional. If you have already had clinical genetic testing and meet eligibility criteria for this study as shown in the Eligibility Section, you may enroll regardless of the results of your clinical genetic testing. While it is well recognized that hereditary factors contribute to the development of a subset of human cancers, the cause for many cancers remains unknown. The application of next generation sequencing (NGS) technologies has expanded knowledge in the field of hereditary cancer predisposition. Currently, more than 100 cancer predisposing genes have been identified, and it is now estimated that approximately 10% of all cancer patients have an underlying genetic predisposition. The purpose of this protocol is to identify novel cancer predisposing genes and/or genetic variants. For this study, the investigators will establish a Data Registry linked to a Repository of biological samples. Health information, blood samples and occasionally leftover tumor samples will be collected from individuals with familial cancer. The investigators will use NGS approaches to find changes in genes that may be important in the development of familial cancer. The information gained from this study may provide new and better ways to diagnose and care for people with hereditary cancer. PRIMARY OBJECTIVE: - Establish a registry of families with clustering of cancer in which clinical data are linked to a repository of cryopreserved blood cells, germline DNA, and tumor tissues from the proband and other family members. SECONDARY OBJECTIVE: - Identify novel cancer predisposing genes and/or genetic variants in families with clustering of cancer for which the underlying genetic basis is unknown.

NCT ID: NCT03008369 Completed - Clinical trials for Metastatic Adrenal Gland Pheochromocytoma

Lenvatinib in Treating Patients With Metastatic or Advanced Pheochromocytoma or Paraganglioma That Cannot Be Removed by Surgery

Start date: May 31, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well lenvatinib works in treating patients with pheochromocytoma or paraganglioma that has spread to other places in the body or cannot be removed by surgery. Lenvatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02961491 Approved for marketing - Pheochromocytoma Clinical Trials

Expanded Access Program of Ultratrace Iobenguane I131 for Malignant Relapsed/Refractory Pheochromocytoma/Paraganglioma

Start date: n/a
Phase:
Study type: Expanded Access

The purpose of this sub-study is to provide expanded access of AZEDRA (Ultratrace Iobenguane I 131) and to evaluate the safety and tolerability of AZEDRA in subjects with iobenguane-avid malignant and/or recurrent pheochromocytoma/paraganglioma (PPGL).

NCT ID: NCT02834013 Active, not recruiting - Clinical trials for Nasopharyngeal Carcinoma

Nivolumab and Ipilimumab in Treating Patients With Rare Tumors

Start date: January 30, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

NCT ID: NCT02721732 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Pembrolizumab in Treating Patients With Rare Tumors That Cannot Be Removed by Surgery or Are Metastatic

Start date: August 15, 2016
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well pembrolizumab works in treating patients with rare tumors that cannot be removed by surgery or have spread to other parts of the body. Monoclonal antibodies, such as pembrolizumab, may block specific proteins found on white blood cells which may strengthen the immune system and control tumor growth.

NCT ID: NCT02592356 Completed - Clinical trials for Thyroid Gland Medullary Carcinoma

Effect of Cabozantinib S-Malate or Lenvatinib Mesylate on Weight and Body Composition in Patients With Metastatic Endocrine Cancer

Start date: November 16, 2015
Phase: N/A
Study type: Interventional

The goal of this clinical research study is to learn about possible weight, muscle, and/or fat loss in patients receiving cabozantinib or lenvatinib.

NCT ID: NCT02431715 No longer available - Neuroblastoma Clinical Trials

18F-FDOPA PET in Neuroendocrine Tumours

Start date: n/a
Phase:
Study type: Expanded Access

Neuroendocrine tumours (NETs) are a group of neoplasms generally arising from the gastroenteropancreatic tract. They are usually slow growing, have low malignant potential, and often go unnoticed until they become metastatic. The correct treatment approach is dependent on the extent of the disease, however surgical approaches and systemic therapy can be curative. Combined positron emission tomography/computed tomography (PET/CT) using the radiotracer 18F-6-L-fluorodihydroxyphenylalanine (18F-FDOPA) has been shown to be a promising non-invasive technique to help localizing NETs and guide their treatment.