Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04998253
Other study ID # 09-CIE-011-20160627
Secondary ID
Status Completed
Phase Early Phase 1
First received
Last updated
Start date October 1, 2020
Est. completion date May 15, 2021

Study information

Verified date August 2021
Source Unidad Temporal COVID-19 en Centro Citibanamex
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Summary Currently, the COVID-19 pandemic has overtaken health systems worldwide, exceeding the capacity of intensive care units. In addition to this, countries such as the United States have reported a decrease in the supplies of drugs such as Propofol and Midazolam (traditionally used as sedatives in patients with invasive mechanical ventilation), so in the absence until now of a specific treatment against SARS-COV-2 virus, improving the support strategies in patients in the severe spectrum of the disease Acute Respiratory Distress Syndrome (ARDS) is a priority. Given the global state of emergency due to COVID-19, the use of sevoflurane has the potential to mitigate the shortages of sedative drugs, promote the recovery of patients with ARDS, and potentially reduce mortality. A study will be conducted to evaluate the effect of sevoflurane as inhalation sedation in patients with ARDS secondary to SARS-COV2 compared to the standard. The primary objective of the study is to assess the difference in oxygenation, for which the calculation of the partial pressure of arterial oxygen to fractional inspired oxygen concentration ratio (PaO2 / FiO2) will be used at 24 and 48 hours. Also, the effect of the possible attenuation or inhibition of hypoxic pulmonary vasoconstriction will be evaluated by hemodynamic monitoring with a pulmonary artery catheter and transthoracic echocardiography and its possible effect on the right ventricle. Outcome: we expect an improvement in oxygenation and consequently a reduction in the days of invasive mechanical ventilation, stay in the intensive care unit (ICU) and hospital. In addition to evaluating its possible anti-inflammatory effect and probably establishing a safe and effective alternative and possibly with greater benefits compared to standard intravenous sedation.


Description:

1. Background. The lung is the main organ affected in the SARS-COV-2 virus infection, in an observational study, it was reported that up to 42% of patients developed ARDS and of these, up to 81% required intensive care treatment. The mortality reported at the beginning of the pandemic for patients with ARDS secondary to COVID-19 was close to 90%, however, a recent study places mortality at 32%, a figure that is related to that reported for ARDS of other etiologies. To date, few interventions have been shown to have an impact on the mortality of patients with ARDS (of any etiology) in mechanical ventilation: judicious use of PEEP (pressure at the end of expiration), ventilation with low tidal volume (6 ml/kg predicted weight), limit plateau pressure (Pplt) to less than 30 cmH2O, maintain alveolar conduction pressure (DP) <15cmH2O and early use of ventilation in the prone position. The use of alveolar recruitment maneuvers and neuromuscular blockade, although controversial, are widely used with variable impact on mortality. The use of VV ECMO (Veno-venous configuration extracorporeal oxygenation membrane), ECCO2R (extracorporeal carbon dioxide removal), and NO (nitric oxide) systems are limited by availability and high cost with inconsistent results in mortality in ARDS. Therefore, the search for other cost-effective strategies for the treatment of ARDS has led to the consideration in recent years of the use of other drugs such as volatile anesthetics. Jabaudon et al. conducted a study of sedation with sevoflurane in patients with ARDS where they documented an improvement in the PaO2/FiO2 ratio in the first two days compared with patients sedated with midazolam. It should be clarified that the study showed no difference in mortality between the two groups however this can be attributed to the number of subjects included (n = 50). Sevoflurane offers several advantages as a sedative agent in ARDS patients on mechanical ventilation. They depress the ventilatory response to hypoxia and hypercapnia with a dose and time-dependent effect. The response to hypoxia is altered from 0.1 MAC (minimum alveolar concentration) of the halogenated agent and disappears above 1.1 MAC, with moderate effects on hypercapnia. It is a potent bronchodilator that potentiates the effect of neuromuscular blockers and has cardioprotective properties. However, there are potential disadvantages of sevoflurane, depression of cardiac contractile function has been observed in animal models, as well as dose-dependent lusitropic alteration, and inhibition of the mechanisms that facilitate hypoxic pulmonary vasoconstriction (HPV). Currently, anti-inflammatory properties of sevoflurane have been documented in animal models with ARDS, with a significant reduction of cytokines such as IL-1b (interleukin 1 beta), IL-6, IL-10, TNFa (tumor necrosis factor-alpha), TGF- b (transforming growth factor-beta) among others. These findings were also corroborated in humans by Jabaudon et al. 2. Justification. Currently, the COVID-19 pandemic has overtaken health systems worldwide, exceeding the capacity of intensive care units. In addition to this, countries such as the United States have reported a decrease in the supplies of drugs such as Propofol and Midazolam (traditionally used as sedatives in patients with invasive mechanical ventilation), so in the absence until now of a specific treatment against SARS-COV-2 virus [36], improving the support strategies in patients in the severe spectrum of the disease (ARDS) is a priority. 3. Statement of the Problem. Experimental evidence in animal models and with humans reveal the anti-inflammatory effect of sevoflurane at the pulmonary level with improvement in oxygenation in the setting of adult respiratory distress syndrome regardless of its etiology. Given the global state of emergency due to COVID-19, the use of sevoflurane has the potential to mitigate the shortages of sedative drugs, promote the recovery of patients with ARDS, and potentially reduce mortality. Therefore, it is relevant to define the effect of sevoflurane on cardiac function, especially on the right ventricle, as well as its ability to attenuate the hypoxic vasoconstriction mechanism, since it would allow establishing its risk profile in this population and standardizing its use. 4. Research Question. Can sevoflurane improve oxygenation in patients with ARDS secondary to COVID-19 without significantly affecting the mechanism of hypoxic vasoconstriction or right ventricular function? 5. Primary objective. To determine whether sedation with sevoflurane improves oxygenation without producing significant changes in the mechanism of hypoxic vasoconstriction (determined by changes in pulmonary vascular resistance) or in right ventricular function. 5.1 Secondary objectives: Compare the effect on the pulmonary circulation of sevoflurane against Propofol. Compare the effect on the right ventricular function of sevoflurane versus Propofol. Compare anti-inflammatory effect (determined by serum levels of IL-6, CRP, ferritin, DHL) of sevoflurane against propofol. 6. Hypothesis. Sevoflurane improves oxygenation in patients with ARDS secondary to COVID-19 without a significant impact on the mechanism of HVP and right ventricular function. 7. Patients and Methods. 7.1 Randomization Simple randomization will be carried out using an envelope containing each sedative with 2 treatment groups, in total 11 patients will be placed in each group. Considering 5% losses, by the formula: Sample adjusted to losses = n (1/1 - R) n = number of subjects without losses R = expected proportion of losses A person outside the study will place the indicated therapy inside identical opaque envelopes numbered 1 to 22 and then in a closed box. The investigators will use the envelopes consecutively with the indicated therapy. Neither the researcher nor the people related to the study or the treatment will know the therapy that each patient will receive. 7.2 Sample calculation: The investigators based the sample calculation on the article published by Jabaudon and collaborators. Using the formula for the difference of means: (Alpha). Sample size estimation for two tails n=((Z1-β±Z1-α/2)2*σ)/((µ0-µ1)) Where: Zα = value of z related to α = 0.05 (extracted from reference tables) Zβ = value of z related to β = 0.20 (power of 80%). SD = standard deviation μ0 = group A mean µ1 = mean of group B According to the example, substituting the values. It would be as follows: Zα = 1.96 Zβ = -0.84 SD = 2 µ0 = 205 ± 56 μ1 = 166 ± 59 It is necessary to include 39 patients in each group if it is desired to obtain 80% statistical power with an error α of 0.05. If it is desired to achieve greater power, i.e. 99% with an error α of 0.01, 107 should be included per group. To detect a mean difference of -141, seeking to achieve that with the use of sevoflurane oxygenation improves by using the PaO2/FIO2 ratio. 8.1 Randomization. A person outside the research group will randomize the patients through the simple selection of the two drugs, once their admission to the intensive care unit is requested. The investigators will not carry out the blinding of the researchers since the use of sevoflurane requires an external computer that cannot be replicated for the control group. 8.2 Definition of the maneuver to be performed. Experimental group: will receive sedation with sevoflurane with an infusion rate to maintain MAC of 0.7 and fentanyl 1mcg /kg/hour Control group: will receive sedation with Propofol at doses of 20-50mcg/kg/min and fentanyl at doses of 1 to 2mcg/kg /hour. For both groups, the doses will be titrated to maintain a RASS score between -3 to -4 in both groups. Both groups will receive cisatracurium as a continuous infusion of 3 to 5mcg / kg/min for 48 hours. The investigators will maintain sedation for both groups with the same scheme for 48 hours, after which the drugs used for sedation will be modified at the discretion of the intensive care physicians. 8.2 Evaluation of Oxygenation. The primary objective of the study is to assess the difference in oxygenation in both groups, for which the calculation of the PaO2 / FiO2 ratio will be used, taking peripheral arterial blood, with FiO2 at 100% one hour after the start of sedation corresponding to each group, again at 24 and 48 hours. 8.3 Effect on the mechanism of hypoxic pulmonary vasoconstriction. Hypoxic pulmonary vasoconstriction (HPV) is a complex mechanism that responds to local effects on oxygen depletion probably through precapillary alveolar vasoconstriction mediated by intrinsic, sympathetic, and perhaps other humoral agents. Due to the difficulty of studying this mechanism, the investigators will use surrogate methods. For this purpose, the use of pulmonary vascular resistance is considered, which will represent changes in pulmonary vascular tone and will be determined invasively through a pulmonary arterial catheter (Swan-Ganz) for which the following formula will be used: PVR=(MPAP-LAP)/CO Where PVR = pulmonary vascular resistance, MPAP = mean pulmonary artery pressure, LAP = left atrial pressure or pulmonary wedge pressure and CO = cardiac output. The research group agreed to calculate the PVR using parameters obtained by the Swan-Ganz catheter because it is the gold standard for the study of pulmonary circulation. Another surrogate method will be the shunt fraction, for which mixed venous blood (taken from the pulmonary artery) and systemic arterial blood (taken from the radial artery) with a FiO2 (inspired oxygen fraction) of 100% will be used. Alterations in the hypoxic vasoconstriction mechanism will be reflected as an increase or decrease in the short-circuit fraction, for the above, the following formula will be applied: SCF=(CcO2-CaO2)/(CcO2-CvO2) Where SF = Shunt fraction, CcO2 = capillary oxygen content, CaO2 = arterial oxygen content and CvO2 = venous oxygen content. CcO2=1.34xHbx1+0.0031xPaO2 Where Hb = Hb concentration in g / dL, 1 represents 100% saturation of hemoglobin at the level of the alveolar capillaries, 0.0031 is the oxygen dilution constant in plasma and PaO2 is the peripheral arterial oxygen partial pressure in mmHg. CaO2=1.34xHbxSaO2+0.0031xPaO2 Where SaO2 is the peripheral arterial oxygen saturation (numerical value) and paO2 is the peripheral arterial oxygen partial pressure in mmHg. CvO2=1.34xHbxSvO2+0.0031xPvO2 Where SvO2 is the mixed venous oxygen saturation (numerical value) and PvO2 is the partial pressure of oxygen at the venous level. The shunt fraction was considered by the research group as another surrogate to evaluate the phenomenon of hypoxemic pulmonary vasoconstriction, the inhibition of this would produce an increase in the shunt fraction by allowing blood circulation through non-ventilated alveoli. The shunt fraction will be recorded one hour after the start of sedation corresponding to each group, again at 24 and 48 hours. 8.4 Evaluation of right ventricular function. The investigators will assess the right ventricular function by determining invasive parameters of the pulmonary artery catheter. The investigators will measure parameters one hour after the start of sedation for each group, again at 24 and 48 hours. 8.5 Determination of the anti-inflammatory effect. The anti-inflammatory effect is assessed with serum measurement of interleukin 6 (IL-6), C-reactive protein (CRP), ferritin, DHL (lactic dehydrogenase), taken by venipuncture on admission, at 24 and 48 hours. 8.6 Measurement of dead space (DS). Quantitative lateral flow capnography will be performed through a Carescape B450 multiparametric (General Electric, Finland). The physiological dead space expressed as a percentage will be calculated using the Bohr formula: DS=(PACO2-PEtCO2)/PACO2 Where DS = dead space, PaCO2 = partial pressure of arterial CO2 in mmHg, PEtCO2 = end tidal CO2 pressure in mmHg. Measurements will be made one hour after the start of sedation for each group, again at 24 and 48 hours. 8.7 Alveolar ventilation monitoring. The investigators will measure the partial pressure of CO2 at the peripheral arterial blood and the values will be recorded after the start of sedation corresponding to each group, as well as at 24 and 48 hours. 8.8 Mechanical Ventilation. Mechanical ventilation will be carried out with Mindray SV300 ventilators (Mindray, China) for the case of the control groups, in the case of the experimental group, due to the type of connection required for the activated carbon filter, Avea ventilators (Carefusion, United States) will be used or Dräger Evita Infinity V500 (Dräger, Germany). After intubation, the investigators will perform a staircase recruitment maneuver. 8.8.1 Staircase recruitment maneuver. Pressure assist-control mode will be programmed with an inspiratory pressure of 15 cm H2O, respiratory rate of 10 breaths per minute, inspiration-expiration ratio (IRR) 1: 1, FiO2 100% and PEEP of 25 cm H2O for 1 minute, then PEEP will be increased to 30 cmH2O for 1 minute and finally, PEEP will increase to 35 cm H2O for 1 minute. 8.8.2 PEEP titration. After the alveolar recruitment maneuver, PEEP will be titrated based on the best compliance (descending fashion). In assist-control mode by volume with decelerated flow (not all the ventilators used to offer a continuous flow option), a volume of 6ml / kg of predicted weight will be programmed with the following formula: Men = 50 + [0.91 x (size in cm-152.4)] Women = 45.5 + [0.91 x (size in cm-152.4)] The respiratory rate will be programmed at 20 breaths per minute with 1: 2 inspiration: expiration (IRR) ratio, FiO2 100%, PEEP of 23cmH2O. The selected PEEP will be maintained for 1 minute and lung compliance will be measured with an inspiratory pause of 3 seconds, which will be recorded, a total of 3 minutes will be completed with the selected PEEP after which 3cmH2O will be decreased, repeating this process until the best distensibility is obtained. The best static compliance, which will be recorded and the PEEP will be programmed 2cmH2O over the PEEP in which the best compliance has been obtained. Once the PEEP has been titrated, it will not be modified within 48 hours, unless airway pressure targets are not maintained (alveolar conduction pressure or plateau pressure). 8.8.3 Objectives of mechanical ventilation: Tidal volume ventilation calculated at 6ml / kg predicted weight. Plateau pressure = or <27 cmH2O Alveolar conduction pressure = or <14 cmH2O FiO2 to maintain SpO2 between 92 to 94% Arterial pH> 7.25. Minimize Auto-PEEP 3.8.4 Measurements of lung mechanics and ventilation parameters. The following measurements will be made through the ventilator software tools: Plateau pressure (Pplt) by applying a 3-second inspiratory pause. Alveolar driving pressure (DP): using the following formula: DP=Pplt-PEEP Static compliance (Cest) = by the following formula: Cest=Tidal Volume/DP Airway resistance (Raw), which will be calculated using the following formula. RVA=(Ppk-Pplt)/Flow Where Ppk is the peak pressure, Pplt is the plateau pressure, and flow is the volume that enters the system during inspiration in one second. The investigators will record the minute volume and respiratory rate. The investigators will record the measurement of Dp, Cest, and Pplt 1 hour after the start of the corresponding sedation and again at 24 and 48 hours. The investigators will document the average minute volume and respiratory rate on days 1 and 2. 8.8.5 Ventilation in the prone position. Patients who, after 24 hours of the recruitment and PEEP titration maneuver, have a PaO2 / FiO2 ratio <150mmHg will be candidates for ventilation in the prone position. 8.9 Inhalation sedation The AnaConda device (Sedana Medical, Ireland) is placed between the endotracheal tube and the ventilator circuit. The anesthetic infusion line is attached to a syringe, from where the anesthetic (sevoflurane) will be delivered to said device. The sample line will be taken to the anesthetic gas analyzer for MAC control (End-expiratory concentration "EEC" of the anesthetic). The anesthetic gas outlet port will be attached to the absorbent material container. Filling the syringe and purging the infusion line: the infusion lines and sampling line must be supplied by the manufacturer AnaConda since volatile anesthetics can dissolve plastic materials. The syringes must be filled with the special adapter which is placed on the anesthetic bottle, avoiding leaks to avoid environmental contamination. Since the infusion line has a dead space of 1.2 ml in volume, a bolus will be programmed in the infusion pump. Once the line has been purged, the infusion rate will be adjusted to the minute volume or MAC of the anesthetic. The rate will be between 2 to 10 ml/hour or until obtaining a MAC 0.7. Unwanted effects with the use of AnaConda: Increased dead space (approximately 100 ml) Hemodynamic effects in case of overdose. Effects of sevoflurane administration Drug Interactions with Sevoflurane. There is no evidence of interaction with other drugs other than those indicated by the anesthetic technical datasheet. 8.10 Hemodynamic monitoring and pressure recording. Carescape B450 multiparametric monitors (General Electric, Finland) will be used for the measurement and recording of pressures, as well as standard transducers for the measurement of invasive pressures. A central venous catheter (triple-lumen) of 7 Fr and 20 cm in length (Teleflex, USA) will be installed for all patients through left internal jugular access, as well as a 7 Fr Swan-Ganz type pulmonary artery catheter and 110 cm (Edwards Lifesciences, USA) using 11 cm long 8 Fr percutaneous introducers (Teleflex, USA) through the right internal jugular vein. For venous cannulation, a modified Seldinger technique will be used with ultrasound guidance with a 5-10 MHz linear transducer L-38 (Fujifilm Sonosite Europe, The Netherlands) with a Sonosite SII ultrasound device (Fujifilm Sonosite Europe, The Netherlands). After the placement of the venous catheters, a portable chest X-ray will be taken to confirm that these catheters have the usual position and rule out complications. The following measurements will be performed: pulmonary artery systolic and diastolic pressure (PASP, PADP respectively), central venous pressure (CVP), pulmonary artery occlusion pressure (PAOP), pulmonary vascular resistance (PVR), systemic vascular resistance (SVR), right ventricular stroke work (RVSW) and left ventricular work (LVSW). Stroke volume (and cardiac output) will be computed using the thermodilution technique averaging three consecutive injections with 10 ml of 0.9% saline solution. Measurements will be made by two operators and will be recorded one hour after the start of sedation for each group and at 24 and 48 hours. In the case of systolic, diastolic, and mean pressure, the averages at 24 and 48 hours will be recorded. The record will be made one hour after the start of the sedation assigned to each group, at 24 and 48 hours after the averages of the mean systemic arterial pressure.


Recruitment information / eligibility

Status Completed
Enrollment 24
Est. completion date May 15, 2021
Est. primary completion date November 30, 2020
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: 1. Over 18 years 2. Both genders 3. Diagnosis of COVID-19 (SARS-COV2) with moderate to severe ARDS from the Berlin classification (PaO2 / FiO2: < 200). Exclusion Criteria: 1. Acute kidney failure. 2. Severe liver failure 3. Suspected or documented intracranial hypertension. 4. Family history of malignant hyperthermia. 5. History of malignant hyperthermia. 6. Documented chronic lung disease. 7. Documented chronic pulmonary hypertension 8. Patients who do not sign informed consent.

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Effects in oxygenation and hypoxic pulmonary vasoconstriction
Determination of the anti-inflammatory effect. The anti-inflammatory effect is assessed with serum measurement of interleukin 6 (IL-6), C-reactive protein (CRP), ferritin, DHL (lactic dehydrogenase), taken by venipuncture on admission, at 24 and 48 hours. The following measurements will be performed: pulmonary artery systolic and diastolic pressure (PASP, PADP respectively), central venous pressure (CVP), pulmonary artery occlusion pressure (PAOP), pulmonary vascular resistance (PVR), systemic vascular resistance (SVR), right ventricular stroke work (RVSW) and left ventricular work (LVSW). Stroke volume (and cardiac output) will be computed using the thermodilution technique averaging three consecutive injections with 10 ml of 0.9% saline solution.

Locations

Country Name City State
Mexico Adrián Palacios Chavarria Mexico City

Sponsors (1)

Lead Sponsor Collaborator
Unidad Temporal COVID-19 en Centro Citibanamex

Country where clinical trial is conducted

Mexico, 

References & Publications (38)

Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003 Mar 19;41(6):1021-7. — View Citation

Abe K, Shimizu T, Takashina M, Shiozaki H, Yoshiya I. The effects of propofol, isoflurane, and sevoflurane on oxygenation and shunt fraction during one-lung ventilation. Anesth Analg. 1998 Nov;87(5):1164-9. — View Citation

Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress sy — View Citation

Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N — View Citation

Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 Feb 19;372(8):74 — View Citation

Augustine DX, Coates-Bradshaw LD, Willis J, Harkness A, Ring L, Grapsa J, Coghlan G, Kaye N, Oxborough D, Robinson S, Sandoval J, Rana BS, Siva A, Nihoyannopoulos P, Howard LS, Fox K, Bhattacharyya S, Sharma V, Steeds RP, Mathew T. Echocardiographic asses — View Citation

Beck DH, Doepfmer UR, Sinemus C, Bloch A, Schenk MR, Kox WJ. Effects of sevoflurane and propofol on pulmonary shunt fraction during one-lung ventilation for thoracic surgery. Br J Anaesth. 2001 Jan;86(1):38-43. — View Citation

Brochard L, Slutsky A, Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am J Respir Crit Care Med. 2017 Feb 15;195(4):438-442. doi: 10.1164/rccm.201605-1081CP. — View Citation

Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute res — View Citation

Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, Maury E, Levy B, Cohen Y, Richard C, Kalfon P, Bouadma L, Mehdaoui H, Beduneau G, Lebreton G, Brochard L, Ferguson ND, Fan E, Slutsky AS, Brodie D, — View Citation

Cruz JC, Metting PJ. Understanding the meaning of the shunt fraction calculation. J Clin Monit. 1987 Apr;3(2):124-34. — View Citation

Ferrando C, Aguilar G, Piqueras L, Soro M, Moreno J, Belda FJ. Sevoflurane, but not propofol, reduces the lung inflammatory response and improves oxygenation in an acute respiratory distress syndrome model: a randomised laboratory study. Eur J Anaesthesio — View Citation

Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, Aldecoa C, Martínez-Pallí G, Martínez-González MA, Slutsky AS, Villar J; COVID-19 Spanish ICU Network. Clinical features, ventilatory management, and outcome of ARDS caused by — View Citation

Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, Yuan Q, Xiao X. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020 Jun;39(6):1011-1019. doi: 10.1007/s10096-020-03874-z. Epub 2020 Apr 14. Review. — View Citation

Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girar — View Citation

Harkin CP, Pagel PS, Kersten JR, Hettrick DA, Warltier DC. Direct negative inotropic and lusitropic effects of sevoflurane. Anesthesiology. 1994 Jul;81(1):156-67. Erratum in: Anesthesiology 1994 Oct;81(4):1080. — View Citation

Ishibe Y, Gui X, Uno H, Shiokawa Y, Umeda T, Suekane K. Effect of sevoflurane on hypoxic pulmonary vasoconstriction in the perfused rabbit lung. Anesthesiology. 1993 Dec;79(6):1348-53. — View Citation

Jabaudon M, Boucher P, Imhoff E, Chabanne R, Faure JS, Roszyk L, Thibault S, Blondonnet R, Clairefond G, Guérin R, Perbet S, Cayot S, Godet T, Pereira B, Sapin V, Bazin JE, Futier E, Constantin JM. Sevoflurane for Sedation in Acute Respiratory Distress Sy — View Citation

Kellner P, Müller M, Piegeler T, Eugster P, Booy C, Schläpfer M, Beck-Schimmer B. Sevoflurane Abolishes Oxygenation Impairment in a Long-Term Rat Model of Acute Lung Injury. Anesth Analg. 2017 Jan;124(1):194-203. — View Citation

Kerbaul F, Bellezza M, Guidon C, Roussel L, Imbert M, Carpentier JP, Auffray JP. Effects of sevoflurane on hypoxic pulmonary vasoconstriction in anaesthetized piglets. Br J Anaesth. 2000 Sep;85(3):440-5. — View Citation

Kerbaul F, Bellezza M, Mekkaoui C, Feier H, Guidon C, Gouvernet J, Rolland PH, Gouin F, Mesana T, Collart F. Sevoflurane alters right ventricular performance but not pulmonary vascular resistance in acutely instrumented anesthetized pigs. J Cardiothorac V — View Citation

Lesitsky MA, Davis S, Murray PA. Preservation of hypoxic pulmonary vasoconstriction during sevoflurane and desflurane anesthesia compared to the conscious state in chronically instrumented dogs. Anesthesiology. 1998 Dec;89(6):1501-8. — View Citation

Lindqvist P, Söderberg S, Gonzalez MC, Tossavainen E, Henein MY. Echocardiography based estimation of pulmonary vascular resistance in patients with pulmonary hypertension: a simultaneous Doppler echocardiography and cardiac catheterization study. Eur J E — View Citation

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan — View Citation

Ma X, Vervoort D. Critical care capacity during the COVID-19 pandemic: Global availability of intensive care beds. J Crit Care. 2020 Aug;58:96-97. doi: 10.1016/j.jcrc.2020.04.012. Epub 2020 Apr 23. — View Citation

Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020 Jun 9;323(22):2329-2330. doi: 10.1001/jama.2020.6825. — View Citation

Matsuse S, Hara Y, Ohkura T. The possible influence of pulmonary arterio-venous shunt and hypoxic pulmonary vasoconstriction on arterial sevoflurane concentration during one-lung ventilation. Anesth Analg. 2011 Feb;112(2):345-8. doi: 10.1213/ANE.0b013e318 — View Citation

National Heart, Lung, and Blood Institute PETAL Clinical Trials Network, Moss M, Huang DT, Brower RG, Ferguson ND, Ginde AA, Gong MN, Grissom CK, Gundel S, Hayden D, Hite RD, Hou PC, Hough CL, Iwashyna TJ, Khan A, Liu KD, Talmor D, Thompson BT, Ulysse CA, — View Citation

Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute r — View Citation

Patel SS, Goa KL. Sevoflurane. A review of its pharmacodynamic and pharmacokinetic properties and its clinical use in general anaesthesia. Drugs. 1996 Apr;51(4):658-700. Review. Erratum in: Drugs 1996 Aug;52(2):253. — View Citation

Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care. 2014 Aug 22;4:28. doi: 10.1186/s13613-014-0028-6. eCollection 2014. Review. — View Citation

Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012 Jan;92(1):367-520. doi: 10.1152/physrev.00041.2010. Review. Erratum in: Physiol Rev. 2014 Jul;94(3):989. — View Citation

Venkateshvaran A, Hamade J, Kjellström B, Lund LH, Manouras A. Doppler estimates of pulmonary vascular resistance to phenotype pulmonary hypertension in heart failure. Int J Cardiovasc Imaging. 2019 Aug;35(8):1465-1472. doi: 10.1007/s10554-019-01591-z. Ep — View Citation

Voigtsberger S, Lachmann RA, Leutert AC, Schläpfer M, Booy C, Reyes L, Urner M, Schild J, Schimmer RC, Beck-Schimmer B. Sevoflurane ameliorates gas exchange and attenuates lung damage in experimental lipopolysaccharide-induced lung injury. Anesthesiology. — View Citation

Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011 Sep 1;184(5):514-20. doi: 10.1164/rccm.201010-1584CI. Review. — View Citation

Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani DM, Damiani LP, Guimarães HP, Romano ER, Regenga MM, Taniguchi LNT, Teixeira C, Pinheiro de Ol — View Citation

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndro — View Citation

Xu WY, Wang N, Xu HT, Yuan HB, Sun HJ, Dun CL, Zhou SQ, Zou Z, Shi XY. Effects of sevoflurane and propofol on right ventricular function and pulmonary circulation in patients undergone esophagectomy. Int J Clin Exp Pathol. 2013 Dec 15;7(1):272-9. eCollect — View Citation

* Note: There are 38 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Evaluation of Oxygenation The primary objective of the study is measure the difference in the oxygenation whit two different methods of sedation, inhaled (sevorane) and intravenous (propofol). The oxygenation will be measured whit PaO2 / FiO2 ratio will be used, taking peripheral arterial blood, with FiO2 at 100% one hour after the started of sedation corresponding to each group, again at 24 and 48 hours. 24 and 48 hours
Primary The effect in the hypoxic pulmonary vasoconstriction whit two different type sedation. The changes in pulmonary vascular tone and will be measured invasively through a pulmonary arterial catheter (Swan-Ganz) for which the following formula will be used:
PVR=(MPAP-LAP)/CO Where PVR = pulmonary vascular resistance (dyn*s/cm), MPAP = mean pulmonary artery pressure (mm Hg), LAP = left atrial pressure or pulmonary wedge pressure (mm Hg) and CO = cardiac output (L/min). *79.92 is a constant to equal the units.
24 and 48 hours
Secondary Determination of the anti-inflammatory effect. The anti-inflammatory effect will be measured with serum levels of interleukin 6 (IL-6), C-reactive protein (CRP), ferritin, DHL (lactic dehydrogenase), taken by venipuncture on admission, at 24 and 48 hours. 24 and 48 hours
Secondary Measurement of dead space. The physiological dead space expressed as a percentage will be calculated using the Bohr formula:
DS=(PACO2-PEtCO2)/PACO2 Where DS = dead space, PaCO2 = partial pressure of arterial CO2 in mmHg, PEtCO2 = end tidal CO2 pressure in mmHg.
24 and 48 hours
See also
  Status Clinical Trial Phase
Completed NCT04384445 - Zofin (Organicell Flow) for Patients With COVID-19 Phase 1/Phase 2
Recruiting NCT05535543 - Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
Completed NCT04695392 - Restore Resilience in Critically Ill Children N/A
Terminated NCT04972318 - Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia N/A
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Completed NCT04078984 - Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
Completed NCT04451291 - Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure N/A
Not yet recruiting NCT06254313 - The Role of Cxcr4Hi neutrOPhils in InflueNza
Not yet recruiting NCT04798716 - The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19 Phase 1/Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Not yet recruiting NCT02881385 - Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation N/A
Terminated NCT02867228 - Noninvasive Estimation of Work of Breathing N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Withdrawn NCT02253667 - Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients N/A
Completed NCT02889770 - Dead Space Monitoring With Volumetric Capnography in ARDS Patients N/A
Withdrawn NCT01927237 - Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide N/A
Completed NCT01504893 - Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A
Completed NCT02814994 - Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients N/A