Clinical Trials Logo

Clinical Trial Summary

It is nowadays well established that the immune system can profoundly influence disease outcome in cancer patients. Increasing evidence is indeed showing that patients displaying spontaneous T cell-mediated immune response against their tumor (defined as immune surveillance) have higher chance to respond to therapies and display globally better prognosis. Conversely, patients whose tumor is characterized by immunosuppression, usually involving myeloid cells and chronic inflammation pathways, often undergo rapid progression and rarely benefit from therapy. Hence, capturing the immune features of individual tumors can help to predict disease course and tailor the therapeutic workup in clinical setting.


Clinical Trial Description

It is nowadays well established that the immune system can profoundly influence disease outcome in cancer patients. Increasing evidence is indeed showing that patients displaying spontaneous T cell-mediated immune response against their tumor (defined as immune surveillance) have higher chance to respond to therapies and display globally better prognosis. Conversely, patients whose tumor is characterized by immunosuppression, usually involving myeloid cells and chronic inflammation pathways, often undergo rapid progression and rarely benefit from therapy. Hence, capturing the immune features of individual tumors can help to predict disease course and tailor the therapeutic workup in clinical setting. In addition, overcoming cancer-related immunosuppression could provide a valid tool to rescue immune surveillance and implement cancer treatment through the engagement of the immunological control. Delivering the right cure to the right patient is the base of precision medicine, and intensive efforts are ongoing worldwide to include the assessment of immune features unto individual patient profiling. However, despite the enormous amount of preclinical and clinical data proving the pivotal role of immunity in molding disease outcome, the immune-related assays that have been introduced into clinical practice, are still scantly. One major limitation is related to the fact that most immune biomarkers have been so far evaluated at tumor site, which implies the need for tumor biopsies and limitations related to intra-lesion heterogeneity. Instead, tests relying on blood samples are easier to perform, more reliable in terms of reproducibility, and repeatable for longitudinal studies. Of note, it is nowadays well established that cancer immunity is a systemic process involving different peripheral immune organs (lymph nodes, bone marrow and spleen) and, as such, it can be measured in blood. Hence, circulating immune cells might represent an informative source of biomarkers to reveal the type and activation status of immunity at single patient level. This holds particularly true for tumor-related immunosuppression, which is mostly mediated myeloid cells and it is responsible for blunting antitumor T cell immune-surveillance. Early during carcinogenesis, cancer cells establish a tight cross-talk with the bone marrow, mediated by tumor-released soluble factors that influence myelopoiesis. This process results in the introduction into the peripheral circulation, of aberrant immunosuppressive myeloid cells, globally known as Myeloid-Derived Suppressor Cells (MDSC). MDSC are among the most potent allies of the tumor cells, whose growth and progression in vivo in favored by MDSC ability to inhibit antitumor T cells, promote angiogenesis and sustain metastatic spread. High numbers of MDSC in blood and tumor site of cancer patients is reproducibly associated with poor prognosis and resistance to therapy, including immunotherapy. Studies in preclinical models have also shown that in vivo removal of MDSC reduces tumor expansion in vivo and confers sensitivity to treatment including immunotherapy, indicating a promising role of these cells as appealing novel therapeutic target in cancer. Unfortunately, the phenotypic and functional features of human MDSC are still poorly understood and need to be extensively investigated in clinical setting. The members of the SERPENTINE Consortium have substantially contributed to the discovery and the study of MDSC in cancer, acquiring deep knowledge on the phenotypic and functional features of these cells both in human and murine setting. In the present trial? coordinators are committed to translate the predictive/prognostic role of MDSC immune profiling into real-life clinical practice. Through the concerted effort of all Consortium members and the prospective enrolment of blood samples from a comprehensive cancer patients case set, coordinators are going to develop off-the-shelf predictive/prognostic test based on the standardized quantification of MDSC in peripheral blood of cancer patients. In addition, thanks to our multiple expertise, coordinators are going to get deep insights into the biology of human cancer-related MDSC, for the development of novel therapeutic approaches based on rescuing tumor immune surveillance by antagonizing immunosuppression. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04941365
Study type Interventional
Source Institut du Cancer de Montpellier - Val d'Aurelle
Contact
Status Withdrawn
Phase N/A
Start date July 7, 2022
Completion date March 2024

See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1