Acute Respiratory Distress Syndrome Clinical Trial
Official title:
Inspiratory Ratio: Predictor of Inspiratory Effort Response to High Positive End Expiratory Pressure in Patients Recovering From Acute Respiratory Distress Syndrome.
NCT number | NCT04524091 |
Other study ID # | 20.2020 |
Secondary ID | |
Status | Recruiting |
Phase | |
First received | |
Last updated | |
Start date | August 1, 2020 |
Est. completion date | October 1, 2025 |
Spontaneous Breathing (SB) can be potentially harmful in patient with Acute Respiratory Distress Syndrome (ARDS) during the transition phase of passive ventilation to partial ventilatory support. The application of high Positive End Expiratory Pressure (PEEP) during SB has shown to ameliorate the progression of lung injury by decreasing the TP and esophageal pressure (EP) swings and the stress / strain applied to the lung. The mechanisms proposed to be responsible for these effects are the activation of Hering Breuer reflex, the recruitment of previously collapsed tissue, the homogenization of lung and the improvement of respiratory system compliance and the impairment in the length - tension relationship of the diaphragm. If all the previously explained mechanisms have an effect on the control of inspiratory effort, a decrease in the intensity of effort is expected during an end-inspiratory occlusion in patients who will respond to high PEEP application. Based on this rationale, the investigators developed an index called "Inspiratory Ratio" (IR) to predict the response of patient's inspiratory effort to the application of high PEEP without need of esophageal manometry.
Status | Recruiting |
Enrollment | 30 |
Est. completion date | October 1, 2025 |
Est. primary completion date | March 1, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Need of invasive mechanical ventilation - Patients who had fulfill ARDS criteria based on Berlin definition during any time of invasive mechanical ventilation. - Patient ventilated in pressure support ventilation. - Time of invasive ventilation expected to be longer than 24 hs after the day of enrollment. Exclusion Criteria: - Neuromuscular diseases (e.g., amyotrophic lateral sclerosis, Duchenne Erb) - previous diagnosis of chronic obstructed pulmonary disease - not resolved pneumothorax - bronchopleural fistula - suspicion of central respiratory drive alteration (e.g., benzodiazepines intoxication). |
Country | Name | City | State |
---|---|---|---|
Argentina | Sanatorio Anchorena de San Martin | San Martín | Buenos Aires |
Lead Sponsor | Collaborator |
---|---|
Sanatorio Anchorena San Martin |
Argentina,
Brochard L, Slutsky A, Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am J Respir Crit Care Med. 2017 Feb 15;195(4):438-442. doi: 10.1164/rccm.201605-1081CP. — View Citation
DAS-Taskforce 2015; Baron R, Binder A, Biniek R, Braune S, Buerkle H, Dall P, Demirakca S, Eckardt R, Eggers V, Eichler I, Fietze I, Freys S, Frund A, Garten L, Gohrbandt B, Harth I, Hartl W, Heppner HJ, Horter J, Huth R, Janssens U, Jungk C, Kaeuper KM, Kessler P, Kleinschmidt S, Kochanek M, Kumpf M, Meiser A, Mueller A, Orth M, Putensen C, Roth B, Schaefer M, Schaefers R, Schellongowski P, Schindler M, Schmitt R, Scholz J, Schroeder S, Schwarzmann G, Spies C, Stingele R, Tonner P, Trieschmann U, Tryba M, Wappler F, Waydhas C, Weiss B, Weisshaar G. Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015) - short version. Ger Med Sci. 2015 Nov 12;13:Doc19. doi: 10.3205/000223. eCollection 2015. — View Citation
Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Penuelas O, Abraira V, Raymondos K, Rios F, Nin N, Apezteguia C, Violi DA, Thille AW, Brochard L, Gonzalez M, Villagomez AJ, Hurtado J, Davies AR, Du B, Maggiore SM, Pelosi P, Soto L, Tomicic V, D'Empaire G, Matamis D, Abroug F, Moreno RP, Soares MA, Arabi Y, Sandi F, Jibaja M, Amin P, Koh Y, Kuiper MA, Bulow HH, Zeggwagh AA, Anzueto A. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013 Jul 15;188(2):220-30. doi: 10.1164/rccm.201212-2169OC. — View Citation
Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, Rittayamai N, Lanys A, Tomlinson G, Singh JM, Bolz SS, Rubenfeld GD, Kavanagh BP, Brochard LJ, Ferguson ND. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. Am J Respir Crit Care Med. 2015 Nov 1;192(9):1080-8. doi: 10.1164/rccm.201503-0620OC. — View Citation
Mauri T, Bellani G, Confalonieri A, Tagliabue P, Turella M, Coppadoro A, Citerio G, Patroniti N, Pesenti A. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support. Crit Care Med. 2013 Jul;41(7):1664-73. doi: 10.1097/CCM.0b013e318287f6e7. — View Citation
Mauri T, Cambiaghi B, Spinelli E, Langer T, Grasselli G. Spontaneous breathing: a double-edged sword to handle with care. Ann Transl Med. 2017 Jul;5(14):292. doi: 10.21037/atm.2017.06.55. — View Citation
Morais CCA, Koyama Y, Yoshida T, Plens GM, Gomes S, Lima CAS, Ramos OPS, Pereira SM, Kawaguchi N, Yamamoto H, Uchiyama A, Borges JB, Vidal Melo MF, Tucci MR, Amato MBP, Kavanagh BP, Costa ELV, Fujino Y. High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious. Am J Respir Crit Care Med. 2018 May 15;197(10):1285-1296. doi: 10.1164/rccm.201706-1244OC. — View Citation
Schepens T, Dres M, Heunks L, Goligher EC. Diaphragm-protective mechanical ventilation. Curr Opin Crit Care. 2019 Feb;25(1):77-85. doi: 10.1097/MCC.0000000000000578. — View Citation
Telias I, Brochard L, Goligher EC. Is my patient's respiratory drive (too) high? Intensive Care Med. 2018 Nov;44(11):1936-1939. doi: 10.1007/s00134-018-5091-2. Epub 2018 Mar 1. No abstract available. — View Citation
Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012 May;40(5):1578-85. doi: 10.1097/CCM.0b013e3182451c40. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Inspiratory ratio | Inspiratory ratio will be calculated using the formula (IPSexp - IPSinsp )/IPSexp x 100, being IPSexp = negative deflection in airway pressure during an end expiratory pause; IPSinsp = negative deflection in airway pressure during an end inspiratory pause. | 10 minutes | |
Secondary | Esophageal pressure swing | Esophageal pressure swing will be calculated as the difference between end expiration and end inspiration esophageal pressure during the las 30-60 seconds of each PEEP condition evaluated | 10 minutes | |
Secondary | Dynamic transpulmonary pressure swing | Dynamic transpulmonary pressure swing will be calculated as the difference between end expiration and end inspiration dynamic transpulmonary pressure during the las 30-60 seconds of each PEEP condition evaluated | 10 minutes |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04384445 -
Zofin (Organicell Flow) for Patients With COVID-19
|
Phase 1/Phase 2 | |
Recruiting |
NCT05535543 -
Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04695392 -
Restore Resilience in Critically Ill Children
|
N/A | |
Terminated |
NCT04972318 -
Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia
|
N/A | |
Completed |
NCT04534569 -
Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
|
||
Completed |
NCT04078984 -
Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
|
||
Completed |
NCT04451291 -
Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure
|
N/A | |
Not yet recruiting |
NCT06254313 -
The Role of Cxcr4Hi neutrOPhils in InflueNza
|
||
Not yet recruiting |
NCT04798716 -
The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19
|
Phase 1/Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Terminated |
NCT02867228 -
Noninvasive Estimation of Work of Breathing
|
N/A | |
Not yet recruiting |
NCT02881385 -
Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Completed |
NCT02232841 -
Electrical Impedance Imaging of Patients on Mechanical Ventilation
|
N/A | |
Withdrawn |
NCT02253667 -
Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients
|
N/A | |
Completed |
NCT01504893 -
Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia
|
N/A | |
Withdrawn |
NCT01927237 -
Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide
|
N/A | |
Completed |
NCT02889770 -
Dead Space Monitoring With Volumetric Capnography in ARDS Patients
|
N/A | |
Completed |
NCT01680783 -
Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure
|
N/A | |
Completed |
NCT02814994 -
Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients
|
N/A |