Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04156438
Other study ID # REB-19-51
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date June 29, 2020
Est. completion date December 31, 2021

Study information

Verified date January 2022
Source Saskatchewan Health Authority - Regina Area
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This study will examine the feasibility of a large clinical trial investigating the effectiveness of airway pressure release ventilation and low tidal volume ventilation for patients with moderate-to-severe acute respiratory distress syndrome.


Description:

Acute respiratory distress syndrome (ARDS) is a disease that has an incidence of 5% of hospitalized mechanically ventilated patients. ARDS is associated with high morbidity and mortality in critically ill patients, with mortality reported as high as 45% in severe ARDS. Patients who develop ARDS will require mechanical ventilation. Patients with ARDS are graded by the partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) into three categories of severity: mild (PaO2/FiO2 201-300 mm Hg), moderate (PaO2/FiO2 101-200 mmHg), and severe (PaO2/FiO2 ≤ 100). Volutrauma and barotrauma are thought to contribute to the development of ARDS and alter mortality. The damage that occurs to the lungs manifests itself as inflammation, which leads to poor gas exchange of oxygen and carbon dioxide. Several strategies of lung-protective mechanical ventilation have been investigated in ARDS, including the use of low tidal volume ventilation (LTVV) or ARDSNet strategy, high frequency oscillation ventilation (HFOV), and airway pressure release ventilation (APRV). Lung protective strategies may be best beneficial prior to the onset of the development of ARDS or early in the course of the disease. As a result of the ARDSNet trial, LTVV has been adopted as the usual standard of care of ventilation and safest mode of ventilation for patients with ARDS. Recently, APRV has been proposed as a potential alternative to LTVV. APRV is a form of ventilation that keeps the lungs inflated through the majority of the breath cycle and allows patients to breathe spontaneously above this level of inflation. APRV allows for spontaneous respiration with increased airway pressure, potentially allowing for decreased sedation, shorter duration of mechanical ventilation, and decreased need for vasopressors. APRV has been associated with possible reduction in incidence of ARDS and in-hospital mortality in non-randomized observational studies. In patients with established ARDS, the use of APRV has also not been well studied, with most studies limited to small observational studies often with no comparison group. One randomized trial using APRV alone had less than 30% of patients having a diagnosis of ARDS and did not show any difference in any outcomes. Recently, Zhou and colleagues conducted a randomized trial comparing APRV to conventional ventilation in 138 mechanically ventilated patients with mild to severe ARDS and found that APRV may shorten the duration of mechanical ventilation and reduce intensive care unit (ICU) length of stay. While some of these studies had shown promise of APRV compared to LTVV, there has not been acceptance of APRV into guidelines as first line ventilation, and recommendations of institutions such as the Canadian Agency for Drugs and Technology in Health (CADTH) recommends interpreting these results with caution. Consequently, there remains clinical equipoise on this issue. Some ICU clinicians will currently use APRV as a rescue mode of ventilation in ARDS in their clinical practice while others will continue with the use of LTVV. We would like to randomize patients to LTVV or APRV and examine the feasibility of conducting a large multicentre randomized controlled trial in Canada.


Recruitment information / eligibility

Status Completed
Enrollment 1
Est. completion date December 31, 2021
Est. primary completion date December 31, 2021
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Fulfilling the diagnostic criteria of ARDS, according to the Berlin definition - Moderate to severe ARDS as defined as a PaO2: FiO2 ratio of =150 during invasive mechanical ventilation - Endotracheal intubation and mechanical ventilation for ARDS less than 48 hours Exclusion Criteria: - Age less than 18 years - Pregnancy - Intracranial hypertension (suspected or confirmed) - Severe chronic obstructive pulmonary disease as defined by either: 1. FEV1/FVC less than 50% predicted, or 2. Chronic hypercarbia (PaCO2>45 mmHg), chronic hypoxemia (PaO2 < 55 mmHg) on room air, and/or elevated admission serum HCO3 >30 mmol/L - Presence of documented barotrauma, i.e. pneumothorax - Treatment with extracorporeal support (ECMO) at enrollment - Refractory shock - Advanced directives indicating preferences to not have advanced life support - Moribund patient, i.e. not expected to survive longer than 24 hours

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Low tidal volume ventilation
Conventional ventilation strategy for patient with ARDS
Airway pressure release ventilation
Experimental ventilation protocol for patients with ARDS

Locations

Country Name City State
Canada Regina General Hospital Regina Saskatchewan

Sponsors (1)

Lead Sponsor Collaborator
Saskatchewan Health Authority - Regina Area

Country where clinical trial is conducted

Canada, 

References & Publications (18)

Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. — View Citation

Andrews PL, Shiber JR, Jaruga-Killeen E, Roy S, Sadowitz B, O'Toole RV, Gatto LA, Nieman GF, Scalea T, Habashi NM. Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature. J Trauma Acute Care Surg. 2013 Oct;75(4):635-41. doi: 10.1097/TA.0b013e31829d3504. Review. — View Citation

ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669. — View Citation

Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016 Feb 23;315(8):788-800. doi: 10.1001/jama.2016.0291. Erratum in: JAMA. 2016 Jul 19;316(3):350. JAMA. 2016 Jul 19;316(3):350. — View Citation

de Haro C, Martin-Loeches I, Torrents E, Artigas A. Acute respiratory distress syndrome: prevention and early recognition. Ann Intensive Care. 2013 Apr 24;3(1):11. doi: 10.1186/2110-5820-3-11. — View Citation

Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013 Feb 28;368(9):795-805. doi: 10.1056/NEJMoa1215554. Epub 2013 Jan 22. — View Citation

Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, Allaouchiche B, Verzilli D, Leone M, De Jong A, Bazin JE, Pereira B, Jaber S; IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013 Aug 1;369(5):428-37. doi: 10.1056/NEJMoa1301082. — View Citation

Gattinoni L, Pesenti A. The concept of "baby lung". Intensive Care Med. 2005 Jun;31(6):776-84. Epub 2005 Apr 6. — View Citation

Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005 Mar;33(3 Suppl):S228-40. Review. — View Citation

Jain SV, Kollisch-Singule M, Sadowitz B, Dombert L, Satalin J, Andrews P, Gatto LA, Nieman GF, Habashi NM. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med Exp. 2016 Dec;4(1):11. doi: 10.1186/s40635-016-0085-2. Epub 2016 May 20. Review. — View Citation

Lim J, Litton E, Robinson H, Das Gupta M. Characteristics and outcomes of patients treated with airway pressure release ventilation for acute respiratory distress syndrome: A retrospective observational study. J Crit Care. 2016 Aug;34:154-9. doi: 10.1016/j.jcrc.2016.03.002. Epub 2016 Mar 9. — View Citation

Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, Lewis PL, Barker DE. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010 Sep;69(3):501-10; discussion 511. doi: 10.1097/TA.0b013e3181e75961. — View Citation

Seal K, Featherstone R. Airway Pressure Release Ventilation for Acute Respiratory Distress Syndrome: Clinical Effectiveness and Guidelines [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2018 Feb 1. Available from http://www.ncbi.nlm.nih.gov/books/NBK531787/ — View Citation

Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Espósito DC, Pasqualucci Mde O, Damasceno MC, Schultz MJ. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012 Oct 24;308(16):1651-9. doi: 10.1001/jama.2012.13730. — View Citation

Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA. Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med. 1994 Jun;149(6):1550-6. — View Citation

Walkey AJ, Summer R, Ho V, Alkana P. Acute respiratory distress syndrome: epidemiology and management approaches. Clin Epidemiol. 2012;4:159-69. doi: 10.2147/CLEP.S28800. Epub 2012 Jul 16. — View Citation

Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013 Feb 28;368(9):806-13. doi: 10.1056/NEJMoa1215716. Epub 2013 Jan 22. — View Citation

Zhou Y, Jin X, Lv Y, Wang P, Yang Y, Liang G, Wang B, Kang Y. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017 Nov;43(11):1648-1659. doi: 10.1007/s00134-017-4912-z. Epub 2017 Sep 22. — View Citation

* Note: There are 18 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Informed consent rate A successful informed consent rate will be defined as =70% of substitute decision makers or patients approached choosing to participate in this trial Informed consent rate will be measured over a 1 year period of the pilot study
Primary Recruitment rate A successful recruitment rate will be achieving at least 15 patients over the 1 year period. Recruitment rate will be measured over the one year of the pilot study.
Primary Protocol adherence rate An adherence rate of at least 80% will be considered successful. Protocol adherence will be measured for each study patient, and compiled over the duration of the pilot study (i.e. 1 year).
Secondary 28-day mortality Death, measured from time of enrollment until 28 days. Up to Day 28
Secondary In-hospital mortality Death, at hospital discharge Up to 365 days
Secondary ICU length of stay Length of stay in the intensive care unit Up to 365 days
Secondary Hospital length of stay Length of stay in the hospital in days Up to 365 days
Secondary Length/duration of mechanical ventilation Length of time patient was on mechanical ventilation Up to 365 days
Secondary Incidence of tracheostomy Incidence of tracheostomy during their ICU stay Up to 365 days
See also
  Status Clinical Trial Phase
Completed NCT04384445 - Zofin (Organicell Flow) for Patients With COVID-19 Phase 1/Phase 2
Recruiting NCT05535543 - Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
Completed NCT04695392 - Restore Resilience in Critically Ill Children N/A
Terminated NCT04972318 - Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia N/A
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Completed NCT04078984 - Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
Completed NCT04451291 - Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure N/A
Not yet recruiting NCT06254313 - The Role of Cxcr4Hi neutrOPhils in InflueNza
Not yet recruiting NCT04798716 - The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19 Phase 1/Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Terminated NCT02867228 - Noninvasive Estimation of Work of Breathing N/A
Not yet recruiting NCT02881385 - Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Withdrawn NCT02253667 - Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients N/A
Completed NCT02889770 - Dead Space Monitoring With Volumetric Capnography in ARDS Patients N/A
Withdrawn NCT01927237 - Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide N/A
Completed NCT01504893 - Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A
Completed NCT02814994 - Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients N/A