Acute Respiratory Distress Syndrome Clinical Trial
— EARLOfficial title:
Early Use of Airway Pressure ReLease Ventilation in Critically Ill Adults With Moderate-to-severe Acute Respiratory Distress Syndrome
Verified date | January 2022 |
Source | Saskatchewan Health Authority - Regina Area |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
This study will examine the feasibility of a large clinical trial investigating the effectiveness of airway pressure release ventilation and low tidal volume ventilation for patients with moderate-to-severe acute respiratory distress syndrome.
Status | Completed |
Enrollment | 1 |
Est. completion date | December 31, 2021 |
Est. primary completion date | December 31, 2021 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Fulfilling the diagnostic criteria of ARDS, according to the Berlin definition - Moderate to severe ARDS as defined as a PaO2: FiO2 ratio of =150 during invasive mechanical ventilation - Endotracheal intubation and mechanical ventilation for ARDS less than 48 hours Exclusion Criteria: - Age less than 18 years - Pregnancy - Intracranial hypertension (suspected or confirmed) - Severe chronic obstructive pulmonary disease as defined by either: 1. FEV1/FVC less than 50% predicted, or 2. Chronic hypercarbia (PaCO2>45 mmHg), chronic hypoxemia (PaO2 < 55 mmHg) on room air, and/or elevated admission serum HCO3 >30 mmol/L - Presence of documented barotrauma, i.e. pneumothorax - Treatment with extracorporeal support (ECMO) at enrollment - Refractory shock - Advanced directives indicating preferences to not have advanced life support - Moribund patient, i.e. not expected to survive longer than 24 hours |
Country | Name | City | State |
---|---|---|---|
Canada | Regina General Hospital | Regina | Saskatchewan |
Lead Sponsor | Collaborator |
---|---|
Saskatchewan Health Authority - Regina Area |
Canada,
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. — View Citation
Andrews PL, Shiber JR, Jaruga-Killeen E, Roy S, Sadowitz B, O'Toole RV, Gatto LA, Nieman GF, Scalea T, Habashi NM. Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature. J Trauma Acute Care Surg. 2013 Oct;75(4):635-41. doi: 10.1097/TA.0b013e31829d3504. Review. — View Citation
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669. — View Citation
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016 Feb 23;315(8):788-800. doi: 10.1001/jama.2016.0291. Erratum in: JAMA. 2016 Jul 19;316(3):350. JAMA. 2016 Jul 19;316(3):350. — View Citation
de Haro C, Martin-Loeches I, Torrents E, Artigas A. Acute respiratory distress syndrome: prevention and early recognition. Ann Intensive Care. 2013 Apr 24;3(1):11. doi: 10.1186/2110-5820-3-11. — View Citation
Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013 Feb 28;368(9):795-805. doi: 10.1056/NEJMoa1215554. Epub 2013 Jan 22. — View Citation
Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, Allaouchiche B, Verzilli D, Leone M, De Jong A, Bazin JE, Pereira B, Jaber S; IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013 Aug 1;369(5):428-37. doi: 10.1056/NEJMoa1301082. — View Citation
Gattinoni L, Pesenti A. The concept of "baby lung". Intensive Care Med. 2005 Jun;31(6):776-84. Epub 2005 Apr 6. — View Citation
Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005 Mar;33(3 Suppl):S228-40. Review. — View Citation
Jain SV, Kollisch-Singule M, Sadowitz B, Dombert L, Satalin J, Andrews P, Gatto LA, Nieman GF, Habashi NM. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med Exp. 2016 Dec;4(1):11. doi: 10.1186/s40635-016-0085-2. Epub 2016 May 20. Review. — View Citation
Lim J, Litton E, Robinson H, Das Gupta M. Characteristics and outcomes of patients treated with airway pressure release ventilation for acute respiratory distress syndrome: A retrospective observational study. J Crit Care. 2016 Aug;34:154-9. doi: 10.1016/j.jcrc.2016.03.002. Epub 2016 Mar 9. — View Citation
Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, Lewis PL, Barker DE. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010 Sep;69(3):501-10; discussion 511. doi: 10.1097/TA.0b013e3181e75961. — View Citation
Seal K, Featherstone R. Airway Pressure Release Ventilation for Acute Respiratory Distress Syndrome: Clinical Effectiveness and Guidelines [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2018 Feb 1. Available from http://www.ncbi.nlm.nih.gov/books/NBK531787/ — View Citation
Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Espósito DC, Pasqualucci Mde O, Damasceno MC, Schultz MJ. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012 Oct 24;308(16):1651-9. doi: 10.1001/jama.2012.13730. — View Citation
Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA. Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med. 1994 Jun;149(6):1550-6. — View Citation
Walkey AJ, Summer R, Ho V, Alkana P. Acute respiratory distress syndrome: epidemiology and management approaches. Clin Epidemiol. 2012;4:159-69. doi: 10.2147/CLEP.S28800. Epub 2012 Jul 16. — View Citation
Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013 Feb 28;368(9):806-13. doi: 10.1056/NEJMoa1215716. Epub 2013 Jan 22. — View Citation
Zhou Y, Jin X, Lv Y, Wang P, Yang Y, Liang G, Wang B, Kang Y. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017 Nov;43(11):1648-1659. doi: 10.1007/s00134-017-4912-z. Epub 2017 Sep 22. — View Citation
* Note: There are 18 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Informed consent rate | A successful informed consent rate will be defined as =70% of substitute decision makers or patients approached choosing to participate in this trial | Informed consent rate will be measured over a 1 year period of the pilot study | |
Primary | Recruitment rate | A successful recruitment rate will be achieving at least 15 patients over the 1 year period. | Recruitment rate will be measured over the one year of the pilot study. | |
Primary | Protocol adherence rate | An adherence rate of at least 80% will be considered successful. | Protocol adherence will be measured for each study patient, and compiled over the duration of the pilot study (i.e. 1 year). | |
Secondary | 28-day mortality | Death, measured from time of enrollment until 28 days. | Up to Day 28 | |
Secondary | In-hospital mortality | Death, at hospital discharge | Up to 365 days | |
Secondary | ICU length of stay | Length of stay in the intensive care unit | Up to 365 days | |
Secondary | Hospital length of stay | Length of stay in the hospital in days | Up to 365 days | |
Secondary | Length/duration of mechanical ventilation | Length of time patient was on mechanical ventilation | Up to 365 days | |
Secondary | Incidence of tracheostomy | Incidence of tracheostomy during their ICU stay | Up to 365 days |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04384445 -
Zofin (Organicell Flow) for Patients With COVID-19
|
Phase 1/Phase 2 | |
Recruiting |
NCT05535543 -
Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04695392 -
Restore Resilience in Critically Ill Children
|
N/A | |
Terminated |
NCT04972318 -
Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia
|
N/A | |
Completed |
NCT04534569 -
Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
|
||
Completed |
NCT04078984 -
Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
|
||
Completed |
NCT04451291 -
Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure
|
N/A | |
Not yet recruiting |
NCT06254313 -
The Role of Cxcr4Hi neutrOPhils in InflueNza
|
||
Not yet recruiting |
NCT04798716 -
The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19
|
Phase 1/Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Terminated |
NCT02867228 -
Noninvasive Estimation of Work of Breathing
|
N/A | |
Not yet recruiting |
NCT02881385 -
Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Completed |
NCT02232841 -
Electrical Impedance Imaging of Patients on Mechanical Ventilation
|
N/A | |
Withdrawn |
NCT02253667 -
Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients
|
N/A | |
Completed |
NCT02889770 -
Dead Space Monitoring With Volumetric Capnography in ARDS Patients
|
N/A | |
Withdrawn |
NCT01927237 -
Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide
|
N/A | |
Completed |
NCT01504893 -
Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia
|
N/A | |
Completed |
NCT01680783 -
Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure
|
N/A | |
Completed |
NCT02814994 -
Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients
|
N/A |