Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03969407
Other study ID # 2018-A01760-55
Secondary ID
Status Completed
Phase
First received
Last updated
Start date November 20, 2018
Est. completion date July 20, 2019

Study information

Verified date May 2019
Source Centre Chirurgical Marie Lannelongue
Contact n/a
Is FDA regulated No
Health authority
Study type Observational [Patient Registry]

Clinical Trial Summary

Determination of the best positive end-expiratory pressure (PEEP) based on oxygenation or driving pressure in patients with acute respiratory distress syndrome (ARDS) after cardiothoracic surgery

The use of a positive end-expiratory pressure in acute respiratory distress syndrome is obvious in ARDS management. On the one hand it serves to fight against the reduction of functional residual capacity (FRC) and enable the limitation of hypoxia; and on the other hand it allows the limitation of "opening/closing" lesions in pulmonary alveoli which lead to increase "bio trauma".

However elevated PEEP has harmful effect such as hemodynamic effect on the right ventricle and distension on healthy part of the lung.Other adverse effects are: decreasing cardiac output, increased risk of barotrauma, and the interference with assessment of hemodynamic pressures.

Ideally the adjustment of PEEP level must be done by taking into account each patient characteristic. PEEP titration based on blood gas analysis is one of the most used techniques by physicians.

Current guidelines for lung-protective ventilation in patients with acute respiratory distress syndrome (ARDS) suggest the use of low tidal volumes (Vt), set according to ideal body weight (IBW) of the patient, and higher levels of positive end-expiratory pressure (PEEP) to limit ventilator-induced lung injury (VILI). However, recent studies have shown that ARDS patients who are ventilated according to these guidelines may still be exposed to forces that can induce or aggravate lung injury.

Driving pressure (DP) is the difference between the airway pressure at the end of inspiration (plateau pressure, Ppl) and PEEP.

Driving pressure may be a valuable tool to set PEEP. Independent of the strategy used to titrate PEEP, changes in PEEP levels should consider the impact on driving pressure, besides other variables such as gas exchange and hemodynamics. A decrease in driving pressure after increasing PEEP will necessarily reflect recruitment and a decrease in cyclic strain. On the contrary, an increase in driving pressure will suggest a non-recruitable lung, in which overdistension prevails over recruitment.

The main purposes of this study are to assess the optimal PEEP based on the best driving pressure or the best oxygenation.


Recruitment information / eligibility

Status Completed
Enrollment 118
Est. completion date July 20, 2019
Est. primary completion date June 20, 2019
Accepts healthy volunteers No
Gender All
Age group 15 Years to 100 Years
Eligibility Inclusion Criteria:

- All Patients admitted for intensive care with acute respiratory distress syndrome intubated according to the criteria of the Berlin Consensus

Exclusion Criteria:

- Undrained pneumothoraces

- Hemodynamic instability defined by increased need of vasopressors and / or an systolic arterial pressure below 90 mmHg

- Hypovolemic shock

- Bronchopleural fistula

- High intracranial pressure

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
France Centre Chirurgical Marie Lannelongue Le Plessis-Robinson

Sponsors (1)

Lead Sponsor Collaborator
Centre Chirurgical Marie Lannelongue

Country where clinical trial is conducted

France, 

Outcome

Type Measure Description Time frame Safety issue
Primary Best PEEP level based on the best driving pressure value 1 DAY
Primary Best PEEP level based on the best oxygenation value defined by the PaO2/FiO2 ratio. 1 DAY
See also
  Status Clinical Trial Phase
Completed NCT04384445 - Zofin (Organicell Flow) for Patients With COVID-19 Phase 1/Phase 2
Recruiting NCT05535543 - Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
Completed NCT04695392 - Restore Resilience in Critically Ill Children N/A
Terminated NCT04972318 - Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia N/A
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Completed NCT04078984 - Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
Completed NCT04451291 - Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure N/A
Not yet recruiting NCT06254313 - The Role of Cxcr4Hi neutrOPhils in InflueNza
Not yet recruiting NCT04798716 - The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19 Phase 1/Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Terminated NCT02867228 - Noninvasive Estimation of Work of Breathing N/A
Not yet recruiting NCT02881385 - Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Withdrawn NCT02253667 - Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients N/A
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Completed NCT02889770 - Dead Space Monitoring With Volumetric Capnography in ARDS Patients N/A
Completed NCT01504893 - Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia N/A
Withdrawn NCT01927237 - Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A
Completed NCT02814994 - Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients N/A