Clinical Trials Logo

Clinical Trial Summary

Healthy biological systems are characterized by a normal range of "variability" in organ function. For example, many studies of heart rate clearly document that loss of the normal level of intrinsic, beat-to-beat variability in heart rate is associated with poor prognosis and early death.

Unlike the heart, little is known about patterns of respiratory variability in illness. What is known is that, like the heart, healthy subjects have a specific range of variability in breath- to-breath depth and timing. Additionally, in animal models, ventilator strategies that re-introduce normal variability to the breathing pattern significantly reduce ventilator-associated lung injury.

Critically ill patients requiring mechanical ventilation offer an opportunity to observe and analyze respiratory patterns in a completely non-invasive manner. Current mechanical ventilators produce real-time output of respiratory tracings that can analyzed for variability.

The investigators propose to non-invasively record these tracings from patients ventilated in the intensive care units for mathematical variability analysis. The purpose of these pilot analyses are to: (1) demonstrate the range of respiratory variability present in the mechanically ve ventilated critically ill and (2) demonstrate the ventilator modality that delivers or permits the closest approximation to previously described beneficial or normal levels of variability. Future studies will use this pilot data in order to determine if the observed patterns of respiratory variability in mechanically ventilated critically ill subjects have prognostic or therapeutic implications.


Clinical Trial Description

Different modes of mechanical ventilation allow different levels of patient control of the respiratory pattern. For example, the most common mode of ventilation, called volume control, gives very little control to the patient in the amount of air taken for each breath. Other modes, such as pressure control, pressure regulated volume control and pressure support, allow more patient control of the volume of air delivered by the ventilator. Newer modes, such as airway pressure release ventilation (APRV), allow completely spontaneous patient respirations. All of these modes allow at least some patient control of respiratory rates.

Studies of natural breathing by healthy subjects have shown normal levels of variability in respiratory rate and tidal volume.1 Variability in physiological processes has been associated with health and the loss of variability can presage the onset of illness. For example, normal humans exposed to LPS (lipopolysaccharide-the potent immune-stimulating cell wall component of bacteria) lose their normal respiratory variability. Thus, physiological variability may represent a "hidden vital sign," the monitoring of which may herald important clinical events. Additionally, re-establishing normal levels of variability has therapeutic benefits in animal models. 2

The variability in respiratory patterns in ill patients has not been well studied. For example, it is currently unclear if critical illness results in deviations from normal variability patterns, if ventilator modes allowing increasing patient control of respiration allow patients to attain greater normalcy of respiratory variability, or if deviations from normal respiratory patterns while on ventilator modes which allow for increased levels of spontaneous breathing have prognostic implications.

The purpose of this pilot study is to record respiratory patterns from the ventilators of patients receiving various modes of mechanical ventilation in order to quantify and compare levels of respiratory variability associated with each mode. Our hypothesis is that APRV, a mode that allows spontaneous respiration, will be associated with respiratory variability patterns that most closely approximate that of normal subjects.

We hope that data derived from this study will inform future observational studies correlating respiratory variability during mechanical ventilation with severity of illness and prognosis. ;


Study Design

Observational Model: Case Control, Time Perspective: Prospective


Related Conditions & MeSH terms

  • Acute Lung Injury
  • Adult Respiratory Distress Syndrome
  • Lung Injury
  • Respiratory Distress Syndrome, Adult
  • Respiratory Distress Syndrome, Newborn

NCT number NCT01083355
Study type Observational
Source Boston Medical Center
Contact
Status Withdrawn
Phase N/A
Start date March 2010
Completion date March 2016

See also
  Status Clinical Trial Phase
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04247477 - Comparison of Different PEEP Titration Strategies Using Electrical Impedance Tomography in Patients With ARDS N/A
Completed NCT03315702 - Effect of Mechanical Ventilation on Plasma Concentration Level of R-spondin Proteins
Not yet recruiting NCT02693912 - Changes in Alveolar Macrophage Function During Acute Lung Injury N/A
Completed NCT01659307 - The Effect of Aspirin on REducing iNflammation in Human in Vivo Model of Acute Lung Injury Phase 2
Completed NCT01552070 - Recruitment on Extravascular Lung Water in Acute Respiratory Distress Syndrome (ARDS) Phase 2
Unknown status NCT01186874 - Epidemiology Research on Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) in Adult ICU in Shanghai N/A
Withdrawn NCT00961168 - Work of Breathing and Mechanical Ventilation in Acute Lung Injury N/A
Recruiting NCT00759590 - Comparison of Two Methods to Estimate the Lung Recruitment N/A
Completed NCT00736892 - Incidence of Acute Lung Injury: The Alien Study
Completed NCT02475694 - Acute Lung Injury After Cardiac Surgery: Pathogenesis N/A
Completed NCT00825357 - Biological Markers to Identify Early Sepsis and Acute Lung Injury N/A
Terminated NCT00263146 - Recruitment Maneuvers in ARDS: Effects on Respiratory Function and Inflammatory Markers. N/A
Completed NCT00188058 - Comparison of 2 Strategies of Adjustment of Mechanical Ventilation in Patients With Acute Respiratory Distress Syndrome N/A
Completed NCT00234767 - Study of the Economics of Pulmonary Artery Catheter Use in Patients With Acute Respiratory Distress Syndrome (ARDS) Phase 3
Recruiting NCT02598648 - Role and Molecular Mechanism of Farnesoid X Receptor(FXR) and RIPK3 in the Formation of Acute Respiratory Distress Syndrome in Neonates N/A
Recruiting NCT02948530 - Measurement of Lung Elastance and Transpulmonary Pressure Using Two Different Methods (Lungbarometry)
Completed NCT01532024 - Exploratory Clinical Study of Neutrophil Activation Probe (NAP) for Optical Molecular Imaging in Human Lungs Early Phase 1
Recruiting NCT01992237 - Measuring Energy Expenditure in ECMO (Extracorporeal Membrane Oxygenation) Patients N/A
Completed NCT01486342 - PET Imaging in Patients at Risk for Acute Lung Injury N/A