Clinical Trials Logo

Orthostatic Hypotension clinical trials

View clinical trials related to Orthostatic Hypotension.

Filter by:

NCT ID: NCT05728255 Not yet recruiting - Syncope Clinical Trials

Assessment of the Mechanism of Non-cardiac Syncope

2STEPS
Start date: April 2024
Phase:
Study type: Observational

Identifying the mechanism of non-cardiac syncope is the essential prerequisite for an effective personalized therapy. Aim of this multicentre, prospective, cross-sectional, observational study is to assess effectiveness and diagnostic yield of a two-step standardized assessment which consists of 24-hour ambulatory blood pressure monitoring (ABPM) and of tilt-table Short Cardiovascular Autonomic Function Battery (SCAFB) which consists in carotid sinus massage (CSM), limited to patients ≥40-year-old, standing test, and head-up tilt test (HUT) performed one after the other in an uninterrupted sequence as a single procedure on a tilt table

NCT ID: NCT05725499 Recruiting - Clinical trials for Cardiovascular Diseases

The Effect of Transcutaneous Stimulation on Blood Pressure in Spinal Cord Injury (SCI)

SCI
Start date: May 1, 2023
Phase: N/A
Study type: Interventional

This project will investigate the effect of spinal cord transcutaneous stimulation on blood pressure in individuals with a chronic spinal cord injury who experience blood pressure instability, specifically, orthostatic hypotension (a drop in blood pressure when moving from lying flat on your back to an upright position). The main questions it aims to answer are: 1. What are the various spinal sites and stimulation parameters that normalize and stabilize blood pressure during an orthostatic provocation (70 degrees tilt)? 2. Does training, i.e., exposure to repeated stimulation sessions, have an effect on blood pressure stability? Participants will undergo orthostatic tests (lying on a table that starts out flat, then tilts upward up to 70 degrees), with and without stimulation, and changes in their blood pressure will be evaluated.

NCT ID: NCT05647473 Recruiting - Alzheimer Disease Clinical Trials

Efficacy, Safety and Response Predictors of Adjuvant Astragalus for Cognition in Orthostatic Hypotension

Start date: February 20, 2024
Phase: Phase 2
Study type: Interventional

Background: This pragmatic clinical trial aims to determine the efficacy and safety of add-on Astragalus for cognition and non- cognition in patients with of mild to moderate Alzheimer's disease complicated with orthostatic hypotension in orthostatic hypotension, elucidate the underlying mechanisms, identify related response predictors, and explore effective drug components. Methods: This is an add-on, assessor-blinded, parallel, pragmatic, randomized controlled trial. At least 66 adults with mild to moderate Alzheimer's disease (AD) and OH aged >30 years will be recruited. Participants will be randomized in a 1:1:1 ratio to receive 24 weeks of routine care or add-on low dose Astragalus or high dose Astragalus group. The primary efficacy outcome will be measured by the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Chinese version. Secondary efficacy outcome assessment will include neuropsychological tests, blood pressure, plasma biomarkers, multimodal electroencephalograms, and neuroimaging. Safety outcome measures will include physical examinations, vital signs, electrocardiography, laboratory tests (such as hematologic and blood chemical tests), and adverse event records.

NCT ID: NCT05621460 Recruiting - Syncope Clinical Trials

The Effect of Water Carbonation on Orthostatic Tolerance

Start date: September 1, 2023
Phase: N/A
Study type: Interventional

The primary purpose of this investigation is to determine whether water carbonation can improve orthostatic tolerance in healthy control volunteers. Orthostatic tolerance refers to the ability to maintain an adequate blood pressure when standing. In some individuals blood pressure can fall when standing, predisposing to dizzy spells or fainting episodes. Drinking water can boost blood pressure and making fainting episodes less likely. However, it is not clear whether the carbonation of the water has any further impact on the blood pressure response. This is important because it may be that carbonated water expands the stomach (gastric distension), provoking an increase in sympathetic activity. The increase in sympathetic nervous system activity boosts blood pressure. Resolving this question would have important implications for patients with syncope. This study will test whether carbonated water will have any further impact on blood pressure than the already known effect of non-carbonated water.

NCT ID: NCT05529147 Completed - Hypertension Clinical Trials

The Effects of Medication Induced Blood Pressure Reduction on Cerebral Hemodynamics in Hypertensive Frail Elderly

BLUEBERRY
Start date: September 5, 2022
Phase:
Study type: Observational

Rationale: Systolic hypertension represents the leading risk for burden of disease among older adults (age >70 years), with an increasing prevalence due to the increase in lifespan. Antihypertensive drug treatment (AHT) is beneficial in fit (non-frail) older adults, with substantial (≈40 %) risk reductions for cardiovascular events and mortality. Scarce evidence exists on the risks of adverse effects related to AHT. It has been suggested in medical literature that AHT in frail elderly might cause cerebral hypoperfusion and/or orthostatic hypotension. Therefore, current guidelines advise clinicians to be more cautious regarding treatment targets in this population. However, the evidence for these adverse effects is limited to observational and cross-sectional data and opinion pieces. In contrast to the suggestion of potential adverse effects of AHT in elderly, recent experimental data and secondary analyses of clinical trials do not provide support for this statement. However, evidence in frail older patients remains scarce. Studies that directly examine the safety of AHT with regard to cerebral hemodynamics and orthostatic tolerance in frail elderly are needed to inform potential changes in current treatment guidelines and prevent undertreatment of hypertension in frail older patients. Objective: To examine the impact of medication induced systolic BP (SBP) reductions ≥10 mmHg, while reaching a treatment target of ≤140 mmHg, on cerebral blood flow (CBF) in frail elderly with untreated or uncontrolled systolic hypertension at baseline. We hypothesise that these blood pressure lowering targets (which are consistent with clinical guidelines for non-frail older patients) are not accompanied by detrimental reductions in CBF (i.e. >10% from baseline). Study design: An explorative observational study will be performed to examine the effects of medication induced SBP reductions ≥10 mmHg to office SBP ≤140 mmHg on CBF in frail elderly with untreated or uncontrolled hypertension. Participants will be treated as in usual patient care for older adults with hypertension. Participants will undergo one baseline assessment before exposure to (additional) AHT, followed by in duplo follow-up assessments 6-10 weeks after the start of AHT. The in duplo follow-up evaluations will be performed on separate days within 2 weeks while continuing treatment. Study population: Twelve frail (Clinical Frailty Scale 4-7) elderly (age ≥70 years) with untreated or uncontrolled systolic hypertension (office SBP ≥150 mmHg) that will be subjected to (additional) AHT as part of regular care. Main study parameters/endpoints: The change in resting CBF from baseline to follow-up (i.e. the average of the in duplo follow-up assessments). Secondary outcomes relate to cerebrovascular autoregulation (CA) and orthostatic tolerance. Nature and extent of the burden and risks associated with participation, benefit and group relatedness: Subjects will be subjected to AHT, essentially identical to what is considered 'guideline care', while their wellbeing will be monitored closely. Since all study procedures and used measurement techniques are non-invasive, the nature and extent of burden and risks associated with participation and measurements are negligible.

NCT ID: NCT05487300 Completed - Parkinson Disease Clinical Trials

Effect of Levodopa on Cardiovascular Autonomic Function in Parkinson's Disease

Start date: May 11, 2022
Phase: Phase 2/Phase 3
Study type: Interventional

Levodopa is a precursor of dopamine and is the treatment of choice to treat the motor symptoms of Parkinson's disease (PD); however, the effect of levodopa on cardiovascular autonomic function in PD is poorly understood. Orthostatic hypotension has been documented as a potential side effect of levodopa. As a result, clinicians may be reluctant to prescribe levodopa in patients with PD with neurogenic orthostatic hypotension (PD+OH), which leads to suboptimal management of motor symptoms. On the other hand, other studies failed to show any clear relationship between levodopa and orthostatic hypotension in patients with PD. Important limitations of prior studies include the lack of detailed investigation of baroreflex cardiovagal and sympathetic noradrenergic functions and the fact that the same patients were not tested on and off levodopa. The investigators propose to investigate the effects of levodopa on cardiovascular autonomic function in patients with PD+OH and PD without neurogenic orthostatic hypotension (PD-OH) by performing standardized autonomic testing in the same patients on and off levodopa.

NCT ID: NCT05400174 Recruiting - Parkinson Disease Clinical Trials

Blood Pressure Effects on Cognition and Brain Blood Flow in PD

Start date: December 14, 2021
Phase: N/A
Study type: Interventional

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Besides causing symptoms that impair movement, PD also causes non-motor symptoms, such as problems thinking and orthostatic hypotension (OH), i.e., low blood pressure (BP) when standing. About one-third of people with PD have OH, which can cause sudden, temporary symptoms while upright, including lightheadedness, dizziness, and fainting. People with PD and OH can also experience problems thinking that happen only while upright and not while sitting - this can occur without other symptoms, such as feeling dizzy or faint. However, the level of low BP that can affect thinking remains unknown, and no guidelines exist for treating OH when it happens without symptoms. This is significant because OH could be a treatable risk factor for thinking problems in PD, but OH is often not treated if people do not report obvious symptoms. This project's goal is to determine how BP affects brain function in PD. The proposed experiments will measure BP and brain blood flow continuously in real-time using innovative wearable technology. Persons with PD with OH and without OH will undergo repeated cognitive tests while supine (lying down) and while upright. I will study the associations between BP, thinking abilities, and brain blood flow, and will compare groups with and without OH. These findings could be important because if a certain level of BP correlates with thinking abilities, then treating OH in PD may prevent thinking problems, which would improve health-related quality of life and reduce disability and healthcare costs.

NCT ID: NCT05358210 Recruiting - Blood Pressure Clinical Trials

Effects of Blueberries in Older Adults

BnD
Start date: April 20, 2022
Phase: N/A
Study type: Interventional

This randomized, parallel-design trial will evaluate specific clinical and physiological effects of whole blueberries in adults 70 years of age or older.

NCT ID: NCT05304806 Completed - Clinical trials for Orthostatic Hypotension

Effective Volemia in Older Adults With Orthostatic Hypotension

EVO
Start date: April 20, 2022
Phase:
Study type: Observational

Clinical and biological assessments of volemia are challenging in older patients as they are more likely to present non-typical signs. Point of care ultrasonography (POCUS) using heart and lung exploration is a relevant tool to assess volemia in adults with little data in older adults. The primary objective of the study is to evaluate feasibility of positional POCUS in aging patients. The secondary objectives are to assess the variability of measurements between decubitus and sitting position.

NCT ID: NCT05295810 Recruiting - Clinical trials for Orthostatic Hypotension

Hypercapnia in Orthostatic Hypotension

Start date: March 1, 2022
Phase: N/A
Study type: Interventional

The Autonomic (or "automatic") Nervous System (ANS) regulates internal processes, including control of heart rate and blood pressure (BP). When someone stands, and gravity tries to pull blood away from the brain, the ANS works to maintain BP and brain blood flow. Neurogenic Orthostatic Hypotension (NOH) occurs when our "fight-or-flight" part ("sympathetic") of the ANS fails. BP can drop a lot when upright, reducing blood flow and oxygen delivery to the brain, and this can cause symptoms of light-headedness, nausea, and fainting. One solution to help counter the effects of NOH may be to increase sympathetic activity by breathing higher levels of carbon dioxide. In healthy volunteers, small increases in the amount of inhaled carbon dioxide has been shown to increase BP in the upright position, and this improves symptoms! The objectives of the current study are to apply carbon dioxide in patients with NOH and healthy controls to: (a) evaluate the effects of breathing carbon dioxide on BP and brain blood flow, and (b) determine if a device that increases carbon dioxide while standing will work as a new therapy