View clinical trials related to Nervous System Diseases.
Filter by:Lower limbs of stroke patients gradually recover through Brunnstrom stages, from initial flaccid status to gradually increased spasticity, and eventually decreased spasticitiy. Throughout this process. after stroke patients can start walking, their gait will show abnormal gait patterns from healthy subjects, including circumduction gait, drop foot, hip hiking and genu recurvatum. For these abnormal gait patterns, rehabilitation methods include ankle-knee orthosis(AFO) or increasing knee/pelvic joint mobility for assistance. Prior to this study, similar research has been done to differentiate stroke gait patterns from normal gait patterns, with an accuracy of over 96%. This study recruits subject who has encountered first ever cerebrovascular incident and can currently walk independently on flat surface without assistance, and investigators record gait information via inertial measurement units strapped to their bilateral ankle, wrist and pelvis to detect acceleration and angular velocity as well as other gait parameters. The IMU used in this study consists of a 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer, with a highest sampling rate of 128Hz. Afterwards, investigators use these gait information collected as training data and testing data for a deep neural network (DNN) model and compare clinical observation results by physicians simultaneously, in order to determine whether the DNN model is able to differentiate the types of abnormal gait patterns mentioned above. If this model is applied in the community, investigators hope it is available to early detect abnormal gait patterns and perform early intervention to decrease possibility of fallen injuries. This is a non-invasive observational study and doesn't involve medicine use. Participants are only required to perform walking for 6 minutes without assistance on a flat surface. This risk is extremely low and the only possible risk of this study is falling down during walking.
This study will evaluate the retention effects of a four-week whole-body vibration training intervention in children with Cerebral Palsy. The primary outcomes for this study are gait function, including Timed Up and Go and the two-minute walk test. Secondary outcomes of this study include lower extremity gait function, coordination, and gait variability. For this study, a total of 10 children with Cerebral Palsy (CP) will be recruited with 5 being randomly placed into an experimental group and 5 being randomly placed into a control group. Each participant, regardless of group, will complete pre-, post-, and retention testing, with a four-week whole-body vibration training intervention between the pre- and post-testing. The four-week whole-body vibration training will include three visits per week, with the experimental group receiving a vibration stimulus while standing on a vibration platform. Vibration sessions will consist of three-minutes of vibration, followed by three minutes rest, completing this cycle three separate times. The control group will follow a similar pattern, but rather than experiencing vibration, they will hear a sound of the vibration platform through a speaker. Once the four-week training session is finished, participants will return after a three-month retention period to determine whether ambulation function was retained.
The purpose of this study is to examine the reflex excitability of the rectus femoris in individuals with and without post-stroke Stiff-Knee gait. We use electrical stimulation of the peripheral nerve innervating the rectus femoris for a well-controlled reflex stimulus. We are investigating whether reflex excitability of the rectus femoris correlates with gait kinematics.
The purpose of this study is to better understand Functional Neurological Disorders (FND) by measuring movement timing and brain activity in patients with FND during deliberate movements and when expressing an 'intention' to move. This investigation will use non-invasive brain stimulation to investigate the role of the temporal-occipital-parietal junction in FND.
This is a phase IIa 24-week randomized, double-blind, placebo-controlled study. The study is designed to evaluate the efficacy and safety of Rotigotine (RTG) transdermal administration at the dosage of 4 mg or 6 mg per day versus Placebo (PLC) in newly diagnosed behavioural Frontotemporal Dementia (bvFTD) patients. 75 patients with a diagnosis of probable bvFTD will be randomly allocated to the 3 treatment arms (RTG 4mg/day, RTG 6mg/day or PLC), with 25 patients per group. Clinical and neurophysiological measurements and brain metabolism via FDG-PET will be collected before and after drug administration.
The NeurO2 study is a multicenter observational study looking at NIRS monitoring in neurocrocritically ill patients during the acute phase of care following an acute brain injury. The study is nested within the HEMOTION Trial and the SAHaRA Trial
The research will make it possible to assess patients who recovered from COVID-19 for the incidence of neurological problems (impaired balance, gait, coordination, concentration and attention), and changes in the quality of life, physical activity, social contacts and education.
BACKGROUND: Walking and balance problems are among the most common problems in individuals with cerebral palsy (CP). Hip abduction and extension muscle function insufficiencies are common in children with CP. OBJECTIVE: The aim of this study was to investigate the immediate and long-term effects of Kinesio® Taping (KT) applied on the gluteus maximus and gluteus medius muscles on walking, functionality, balance, and participation in children with unilateral spastic CP. METHOD: This study was designed as a randomized controlled trial. The study included 20 children with unilateral spastic CP: 11 in the taping group and 9 in the control group. KT was applied in the taping group for 4 weeks in addition to a physiotherapy program. The control group received only the physiotherapy program. Body structure and functions were evaluated with the Pediatric Berg Balance Scale (PBBS). Activity was evaluated with the Timed Up and Go Test (TUG), Functional Mobility Scale (FMS), Gross Motor Function Scale (GMFM-88), the BTS G-Walk Spatiotemporal Gait Analysis System. Participation was evaluated with the Canadian Occupational Performance Measure (COPM). Evaluations were made at the beginning of the study and 30 minutes after the first tape application, and at the end of 4 weeks in the taping group. The level of significance was accepted as p<0.05.
Gait disturbances and movement restrictions occur frequently in Parkinson's disease. Patient-centered monitoring with objective aids in the patient's daily life, supports and promotes therapy decisions made by physicians and patients. Technical, sensor-based monitoring has the potential to generate objective target parameters at any point in time during therapy (patient journey), representing the state of health and its progression, and to make this information available to physicians and patients via telemedical data management. In this study, the gait analysis system "Mobile GaitLab Home 2.0", consisting of sensors for gait data acquisition, a smartphone application for study participants (Mobile GaitLab app) and a web portal for physicians (Mobile GaitLab portal) is used for data collection. The research question is divided into three sub-objectives: First, the study explores and tests how technically generated parameters of sensor-based gait analysis can map the symptom "bradykinesis". The second goal is the explorative investigation of how a tele-health service support with low-threshold access to medical professionals, can be integrated into the care process. The third goal is the implementation evaluation of the technological developments. Here, it is examined to determine the extent to which the implementation of gait data and patient feedback (PROMs) in the patient-centered care process within the framework of clinical decision support contributes to early gait-associated therapy optimization and thus improves the general health of patients and how initial indications of positive care effects for patients can be derived. During a 60-day observation phase, study participants use the gait analysis system, which records their gait pattern throughout the day and collects data via the Mobile GaitLab app. Study participants are asked to perform standardized gait tests in the home environment several times a day, in addition to continuous measurements during the awake phase. Frequency of data collection is controlled by Mobile GaitLab Home 2.0 and can be flexibly adjusted to the study participant's health status and therapy. The Mobile GaitLab app uses questionnaires to record data on gait safety, activity, general well-being, and events relevant to the disease. An evaluation of these data (PROMs) and the results from the gait analyses, are visualized for the study participants via the Mobile GaitLab app.
The Bioness Integrated Therapy System (BITS) (Bioness Inc. Valencia, CA) Touch Screen is an FDA approved device comprised of an interactive touchscreen and diverse program options to challenge patients through the use of visual motor activities, visual and auditory processing, cognitive skills, and endurance training. The purpose of this study is to enroll a small group of adults currently undergoing inpatient rehabilitation, who were admitted for an acute neurological event and present with an acute neurological visual field impairment. The primary objective is to compare any increase in visual field awareness using a prescribed regimen consisting of conventional vision exercises compared with a regimen using BITS touch screen technology. Participants will be alternately assigned into "A" and "B" groups upon enrollment. The control group "A" will be prescribed conventional (table top, pen and paper) vision interventions provided by an occupational therapist and will receive pre- and post- assessment of visual field awareness. Treatment group "B" will include a prescribed regimen with use of BITS touch screen technology. Group B participants will receive the same pre- and post- assessment of visual field awareness as Group A participants. The hypothesis is that incorporation of the BITS touch screen technology, being more interactive, will result in better outcomes for visual field awareness. This is an unblinded quasi-randomized control trial that will determine best treatment intervention for visual field impairment. Safety will be measured by the number of reported adverse events. The study period will include 6 sessions per participant, conducted at one site, with the objective of enrolling at least 30 participants to have 15 participants in each study group.