View clinical trials related to Nervous System Diseases.
Filter by:1) Characteristics of handwriting, gait, speech, eye movements, biological samples (blood, urine, stool, saliva, etc.), images, EEG, and other relevant markers in patients with Alzheimer's disease. (2) Characteristics of handwriting, gait, language, eye movement, biological samples (blood, urine, stool, saliva, etc.), imaging, EEG, and other relevant markers in patients with Parkinson's disease. (3) Characteristics of handwriting, gait, language, eye movement, biological samples (blood, urine, stool, saliva, etc.), images, EEG, and other relevant markers in patients with other neurological disorders. (4) Characteristics of handwriting, gait, language, eye movement, biological samples (blood, urine, stool, saliva, etc.), images, EEG and other relevant markers in elderly patients.
The study objective is to improve accuracy in the early detection of neurodevelopmental impairment, especially CP, by evaluating the timepoint (in weeks post term age) that the Prechtl GMA is most useful for prediction of neurodevelopmental impairment at two years of age in children with and without medical complexity. The study team plans to recruit 100 healthy, term-born infants and 250 infants at risk of developing CP for a total of 350 enrolled infants.
The heart and brain are regulated by the autonomic nervous system. Control of these organs can be disrupted in people with spinal cord injury (SCI). This may affect their ability to regulate blood pressure during daily activities and process the high-level information. Previous studies show that high-intensity exercise induces better outcomes on heart and information processing ability in non-injured people compared to moderate-intensity exercise. However, it is unknown the effects of high-intensity exercise on heart and brain function in people with SCI. Therefore, this study aims to examine the effects of a single bout of high-intensity interval training on heart and brain function in this people with SCI compared to age- and sex-matched non-injured controls.
The use of home automation system may be useful in rehabilitation to collect data about the environment and the amount of therapy. Then, the data may be stored in a cloud and integrated with data collected during training provided by technological devices. The main goal of this longitudinal pilot study is to define the productivity of the rehabilitation room (i.e., HoSmartAI room) in the IRCCS San Camillo Hospital (Venice, Italy) service, where the investigators will install home automation sensors and treat patients with neurological disease using technological devices (e.g., robotic and virtual reality). The secondary goals are to define the patients' satisfaction, usability of the system and the clinical effect of treatments delivered with technological devices in the HoSmartAI room. The patient will be assessed to personalized the treatment based on their needs. The treatment will consist of 15 sessions (1h/day, 5day/week, 3 weeks). At the end of the study, the patients will be assessed to define any clinical improvements. Finally, the investigators will define the characteristics of the patients who will benefit from the rehabilitation provided in the HoSmartAI room.
The Epilepsy Learning Health System (ELHS) is a quality improvement and research network to improve outcomes for people with epilepsy. The ELHS is designed as a model of value-based chronic care for epilepsy as envisioned by the National Academies of Medicine Committee in their landmark reports "The Learning Health System" and "Epilepsy Across the Spectrum: Promoting Health and Understanding". The ELHS network is a collaboration among clinicians, patients and researchers that promotes the use of data for multiple purposes including one-on-one clinical care, population management, quality improvement and research. The ELHS Registry includes data on children and adults with epilepsy collected during the process of standard epilepsy care. These data are used to create population health reports and to track changes in outcomes over time. ELHS teams use quality improvement methods, such as Plan-Do-Study-Act (PDSA) cycles, to continuously learn how to improve care.
Dystonias represent hyperkinetic movement disorders characterized by protracted muscle contractions, such as to cause torsional movements and anomalous postures in different parts of the body. Although they occur more often in a focal form (blepharospasm, oromandibular dystonia, cervical dystonia, laryngeal dystonia, attitudinal cramps of the limbs) than segmental (involvement of several contiguous muscle groups, e.g. facial muscles and neck muscles), they are nevertheless capable of significantly influencing the quality of life, with consequent social and health costs. Although described as a predominantly motor disorder, the presence of non-motor symptoms in dystonias associated with alteration of the fronto-striatal circuits is increasingly recognized. Neuroimaging studies have highlighted that the striatum and, more specifically, striatal dopamine, is involved in high cognitive processes such as attention, reward-based learning and decision making. Clinical conditions associated with cortico-striatal circuit dysfunction and abnormal meso-striatal or meso-cortical dopamine transmission also appear to influence temporal estimation, delay discounting, showing an impulsive preference for immediate rewards over delayed gratification. Based on these premises, the present project aims to evaluate the cognitive and affective aspects of dystonias, in line with neuroimaging research documenting structural and functional dysfunctions in the respective brain regions.
In this exploratory qualitative study with a hermeneutic phenomenological approach, we will describe and understand the experience of treatment and hospitalization in hospitalized people suffering from stroke, multiple sclerosis, Parkinson's disease and patients post-neurosurgery for oncological causes. Patients will be interviewed in a semi-structured manner and sampling will take place for each of the pathology groups according to the saturation method.
The purpose of this clinical trial is to learn about the Tremor Retrainer smartphone application and Simplified Functional Movement Disorder Rating Scale in patients with functional tremor. The main questions the study aims to answer are: 1. Is the Tremor Retrainer application usable for patients and are there signs that it can help functional tremor? 2. Can a televideo administration of the Simplified Functional Movement Disorder Rating Scale give enough information to use this scale via televideo in future studies?
Established gait assessments for subjects with spinal cord injury (SCI) (6MWT, 10MWT, TUG, SCIM III and WISCI II) are widely used in the clinical and research setting. So far, no valid measurement exists that assesses the patients' perspective of walking ability in SCI. As there is the 12-item Multiple Sclerosis Walking Scale (12-WS) to assess the patients' perspective on gait ability in patients with multiple sclerosis, it is hypothesized that the 12-WS would also be a valid instrument for subjects with incomplete SCI. The main goal of this study is to collect data from clinical gait assessments in subjects with spinal lesions and to demonstrate that the 12-WS is a valid and reliable patient-reported outcome measurement for individuals with incomplete spinal cord injury.
The study aims to evaluate the safety and efficacy of the Supernova stent retriever device, developed by Gravity Medical Technology, for treating acute ischemic stroke. The device is used to remove blood clots and restore blood flow to the brain .