View clinical trials related to Myeloproliferative Disorders.
Filter by:RATIONALE: Methadone, morphine, or oxycodone may help relieve pain caused by cancer. It is not yet known whether methadone is more effective than morphine or oxycodone in treating pain in patients with cancer. PURPOSE: This randomized clinical trial is studying methadone to see how well it works compared with morphine or oxycodone in treating pain in patients with cancer.
To evaluate the safety and efficacy profile of different treatment regimens of Ruxolitinib (INCB018424) administered to two groups of patients; those with polycythemia vera (PV) and those with essential thrombocythemia (ET). Patients in each group were refractory to hydroxyurea or for whom hydroxyurea is contraindicated.
RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood transplant with reduced intensity conditioning works in treating patients with advanced hematological cancer or other disease.
RATIONALE: Studying samples of blood from patients with cancer in the laboratory may help doctors predict whether patients undergoing donor stem cell transplant will develop acute graft-versus-host disease. PURPOSE: This clinical trial is studying T cells to see how well they help in predicting acute graft-versus-host disease in patients undergoing donor stem cell transplant.
RATIONALE: Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying the side effects and how well low-dose decitabine works in treating patients with symptomatic myelofibrosis.
Blood disorders such as leukemia or lymphoma or hemoglobinopathies can benefit from receiving an allogeneic (meaning that the cells are from a donor) stem cell transplant. Stem cells are created in the bone marrow. They grow into different types of blood cells that the body needs, including red blood cells, white blood cells, and platelets. In a transplant, the body's stem cells would be killed and then replaced by stem cells from the donor. Usually, patients are given very high doses of chemotherapy (drugs which kill cancer cells) prior to receiving a stem cell transplant. However, patients that are older, have received several prior treatments, or have other organ diseases are at a high risk of getting life-threatening treatment-related side effects from high doses of chemotherapy. Over the past several years, some doctors have begun to use lower doses of chemotherapy for preparing patients for a stem cell transplant. A condition that can occur after a stem cell transplant from a donor is Graft Versus Host Disease (GVHD). It is a rare but serious disorder that can strike persons whose immune system is suppressed and have received either a blood transfusion or a bone marrow transplant. Symptoms may include skin rash, intestinal problems similar to inflammation of the bowel and liver dysfunction. This research study uses a combination of lower-dose chemotherapy agents that is slightly different from those that have been used before. The medicines that will be used in this study are Fludarabine, Busulfan, both chemotherapy medicines, and Campath. Campath is a monoclonal antibody (a type of substance produced in the laboratory that binds to cancer cells). It helps the immune system see the cancer cell as something that needs to be destroyed. This research study will help us learn if using Fludarabine, Busulfan and Campath prior to an allogeneic stem cell transplant can provide treatment for blood disorders while decreasing the incidence of side effects.
Patients have a type of blood cell disorder that is very hard to cure. We are now suggesting a treatment that might help patients live longer without disease than other treatment plans would. This treatment is known as a stem cell transplant. We believe this may help patients as it allows us to give much stronger doses of drugs and radiation to kill the diseased cells than we could give without the transplant. We also think that the healthy cells may help fight any diseased cells left after the transplant. Stem Cells are special "mother" cells that are found in the bone marrow (the spongy tissue inside bones), although some are also found in the bloodstream (peripheral blood). As they grow, they become either white blood cells which fight infection, red blood cells which carry oxygen and remove waste products from the organs and tissues or platelets, which enable the blood to clot. For the transplant to take place, we will collect these stem cells from a "donor" (a person who agrees to donate these cells) and give them to recipient. Patients do not have a sibling that is a perfect match, so the stem cells will come from a donor who is the best match available. This person may be a close relative or an unrelated person whose stem cells best "matches" the patients, and who agrees to donate stem cells. Before the transplant, two very strong drugs plus total body irradiation will be given to the patient (pre-conditioning). This treatment will kill most of the blood-forming cells in the bone marrow. We will then give the patient the healthy stem cells. Once these healthy stem cells are in the bloodstream they will move to the bone marrow (graft) and begin producing blood cells that will eventually mature into healthy red blood cells, white blood cells and platelets. This research study will also use CAMPATH-1H as a pre-treatment. CAMPATH-1H is an antibody against certain types of blood cells. CAMPATH-1H is important because it stays active in the body for a long time after infusion, which means it may work longer at preventing GvHD symptoms. The stem cell transplant described above is considered to be "standard" treatment. We would like to collect additional blood as described below in order to evaluate how the immune system is recovering. We are asking permission to draw blood from the patient so that we can measure the number of certain blood cells called T regulatory cells. T regulatory cells are special immune cells that can control or regulate the body's immune response. We want to determine whether T regulatory cells are important participants in graft versus host disease (GVHD), infection and relapse. In GVHD, certain cells from the donated marrow or blood (the graft) attack the body of the transplant patient (the host). GVHD can affect many different parts of the body. The skin, eyes, stomach and intestines are affected most often. GVHD can range from mild to life-threatening. We do not know whether T regulatory cells can modify these conditions. We want to measure these T regulatory cells and learn if these cells do influence these conditions. If we learn that T regulatory cells do affect these conditions, then it may be possible to modify these cells for the benefit of transplant patients.
RATIONALE: Monoclonal antibodies, such as alemtuzumab, can find cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Giving chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving tacrolimus and methotrexate after the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the best dose of alemtuzumab when given together with busulfan and cyclophosphamide followed by a donor stem cell transplant and to see how well it works in treating patients with hematologic cancer.
The purpose of this study is to evaluate the safety and tolerability of XL019 in adults with myelofibrosis. XL019 is a selective inhibitor of the cytoplasmic tyrosine kinase JAK2. JAK2 is activated by cytokine and growth factor receptors and phosphorylates members of the STAT family of inducible transcription factors. Activation of the JAK/STAT pathway promotes cell growth and survival, and is a common feature of human tumors. JAK2 is activated by mutation in the majority of patients with myelofibrosis, polycythemia vera and essential thrombocytosis and appears to drive the inappropriate growth of blood cells in these conditions.
This phase II trial is studying how well aflibercept works in treating patients with myelodysplastic syndromes. Aflibercept may be able to carry cancer-killing substances directly to myelodysplastic syndrome cells. It may also stop the growth of cancer cells by blocking blood flow to the cancer