View clinical trials related to Myeloproliferative Disorders.
Filter by:Impact of monocytes on Myeloproliferative Neoplasm hematopoietic stem cell growth and differentiation in vitro
Prospective study for functional and phenotypic characterization of monocytes in philadelphia-negative myeloproliferative neoplasms
This is a prospective phase I dose-escalation study, with the primary objective to access the MTD and find the RP2D of talazoparib, given in combination with standard of care dosing of pacritinib.
The purpose of this study is to characterize safety and to determine the Recommended Phase 2 Dose (RP2D[s]) and optimal dosing schedule(s) of JNJ-88549968, in part 1 (Dose Escalation); to characterize the safety of JNJ- 88549968 at RP2D(s), in part 2 (Cohort Expansion).
The purpose of this research study is to test the safety and efficacy of cytokine induced memory-like (CIML) natural killer (NK) cells expanded with Interleukin-2 (IL-2) at preventing relapse in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or MDS and myeloproliferative neoplasm (MPN) overlap syndrome after a standard-of-care stem cell transplant. Names of the study therapies involved in this study are: - CIML NK cells intravenous infusion (cellular therapy) - Subcutaneous Interleukin-2 (recombinant, human glycoprotein)
The use of venetoclax-based therapies for pediatric patients with relapsed or refractory malignancies is increasingly common outside of the clinical trial setting. For patients who cannot swallow tablets, it is common to crush the tablets and dissolve them in liquid to create a solution. However, no PK data exists in adults or children using crushed tablets dissolved in liquid in this manner, and as a result, the venetoclax exposure with this solution is unknown. Primary Objectives • To determine the pharmacokinetics of venetoclax when commercially available tablets are crushed and dissolved into a solution Secondary Objectives - To determine the pharmacokinetics of venetoclax solution in patients receiving concomitant strong and moderate CYP3A inhibitors - To determine potential pharmacokinetic differences based on route of venetoclax solution administration (ie. PO vs NG tube vs G-tube) - To determine the concentration of venetoclax in cerebral spinal fluid when administered as an oral solution
This phase II trial evaluates how a curcumin supplement (C3 complex/Bioperine) changes the inflammatory response and symptomatology in patients with clonal cytopenia of undetermined significance (CCUS), low risk myelodysplastic syndrome (LR-MDS), and myeloproliferative neoplasms (MPN). Chronic inflammation drives disease development and contributes to symptoms experienced by patients with CCUS, LR-MDS, and MPN. Curcumin has been shown to have anti-inflammatory and anti-cancer properties and has been studied in various chronic illnesses and hematologic diseases.
This phase II clinical trial tests how well the cytomegalovirus-modified vaccinica Ankara (CMV-MVA) Triplex vaccine given to human leukocyte antigens (HLA) matched related stem cell donors works to prevent cytomegalovirus (CMV) infection in patients undergoing hematopoietic stem cell transplant. The CMV-MVA Triplex vaccine works by causing an immune response in the donors body to the CMV virus, creating immunity to it. The donor then passes that immunity on to the patient upon receiving the stem cell transplant. Giving the CMV-MVA triplex vaccine to donors may help prevent CMV infection of patients undergoing stem cell transplantation.
This phase I trial finds the best dose of PVEK when given together with fludarabine, cytarabine, granulocyte colony-stimulating factor (G-CSF), and idarubicin, (FLAG-Ida) regimen and studies the effectiveness of this combination therapy in treating patients with newly diagnosed adverse risk acute myeloid leukemia (AML) and other high-grade myeloid neoplasms. PVEK is a monoclonal antibody linked to a chemotherapy drug. PVEK is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD123 receptors, and delivers the chemotherapy drug to kill them. Chemotherapy drugs, such as idarubicin, fludarabine, high-dose cytarabine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. G-CSF helps the bone marrow make more white blood cells in patients with low white blood cell count due to cancer treatment. Giving PVEK with the FLAG-Ida regimen may be a safe and effective treatment for patients with acute myeloid leukemia and other high-grade myeloid neoplasms.
This study is being conducted to evaluate the safety, tolerability, dose-limiting toxicity (DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion (RDE) of INCA033989 administered in participants with myeloproliferative neoplasms.