Clinical Trials Logo

Clinical Trial Summary

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. It is characterized by different progressive forms with periods of flare-ups interspersed with phases of remission. MS manifests clinically with signs of multiple neurological dysfunctions as well as less specific symptoms such as fatigue, the prevalence of which is found to be high in these patients and is independently associated with an alteration in their quality of life. Recently, a non-invasive method for assessing maximal muscle oxidative capacity (mVO2) using optical measurement of muscle oxygenation (near-infrared spectroscopy, NIRS) has been described. Measuring tissue light absorption from a skin sensor facing a muscle, makes it possible to distinguish tissue concentrations of oxyhemoglobin (HbO2) and hemoglobin (Hb). The difference in absorbance of Hb and HbO2 corresponds to the balance of O2 supply and consumption in tissue capillaries, allowing calculation of a time constant (kNIRS, min-1) reflecting mitochondrial function. Current literature provides reference values in young healthy subjects and MS patients. This index could therefore constitute a particularly interesting non-invasive indicator of mitochondrial functioning, usable in the clinic.


Clinical Trial Description

Following an arterial occlusion, the rate of decay of the NIRS signal is only dependent on local O2 consumption. Following an exercise increasing the oxygen consumption of the muscle (isometric contractions for 10 to 15 s), carrying out a series of brief occlusions makes it possible to calculate mVO2 (slope of O2 desaturation at each occlusion). mVO2 decreases exponentially with time, allowing calculation of a time constant (kNIRS, min-1) reflecting mitochondrial function. Furthermore, it has been shown that kNIRS correlates with mitochondrial respiration rate measured in oxygraphy (Ryan et al., 2014). A few studies have focused on the link between maximal muscular oxidative capacity (mVO2), fatigue and muscular endurance in patients with MS. Furthermore, contradictory results have been reported regarding mVO2 in this population, suggesting in one case a higher mVO2 compared to healthy subjects while others observe the opposite. This results in an imprecise assessment of maximum muscle oxidative capacity (mVO2) in MS patients and its relationship with fatigue and muscular endurance in this population. The investigator therefore propose to carry out a prospective interventional study to analyze the relationship between these different parameters. The investigator's hypothesis is the existence of a positive correlation between mVO2 and muscular endurance, and negative with fatigue. This relationship will also be sought 6 months after participants engagement in regular physical activity. Given the accumulation of functional deficits, this approach is focused on preventive medicine, and with the aim of improving the care of these patients. The statistical analyzes will be carried out with Stata software (version 15; StataCorp, College Station, Texas, USA), considering a risk of two-sided first type error of 5%. Continuous variables will be presented in the form of mean and standard deviation, according to the normality of their distribution (Shapiro-Wilk test if necessary). In case of non-normality, they will be presented in the form of median, quartiles and extreme values. Qualitative variables will be expressed in numbers and associated percentages. Graphical representations will, as much as possible, be associated with these analyses. A description of the deviations from the protocol, the patients distributed according to these deviations and the causes of abandonment will also be carried out. The number of patients included and the inclusion curve will be presented by group. Patients will be described at inclusion according to the following variables: compliance with eligibility criteria, epidemiological characteristics, clinical characteristics and possible treatments. The main analysis aiming to investigate the association between maximum muscle oxidative capacity (mVO2) of MS patients assessed by near-infrared spectroscopy (NIRS) and muscular endurance of the gastrocnemius muscles assessed with the unipedal plantar flexion test (Single- Leg standing Heel Raise Test (SLSHR)) will be based on a regression coefficient (Pearson or Spearman with regard to the statistical distribution), interpreted with regard to the recommendations reported in the literature. The main analysis could be supplemented by a multivariate analysis aimed at taking into account possible confounding factors (including form/type of MS, functional deficits and age); a multiple linear regression will be proposed. The normality of the residuals will be studied; if necessary, a transformation (for example logarithmic) of the dependent variable of the study may be proposed). The results will then be expressed in terms of regression coefficients and 95% confidence interval. A subgroup analysis of the main analysis will be carried out (if possible), according to age, MS, and functional deficits; which will make it possible to evaluate the robustness of the results with regard to the heterogeneity of the sample under study and the possible impact of these variables in addition to the aforementioned multivariate analysis. The maximum muscular oxidative capacity and the muscular endurance of the gastrocnemius muscles could, secondly, be treated and analyzed as categorical data with regard to the work reported in the literature; the study of their relationship will then be analyzed by the most appropriate statistical test. For the study of the relationship between two categorical variables, a chi2 test or a Fisher exact test will be confirmed by presenting the results in terms of absolute difference and 95% confidence interval. The secondary analyzes aiming to study the relationship between the maximum muscular oxidative capacity, the fatigue (FACIT-F questionnaire) and the walking capacity will be based on a regression coefficient (Pearson or Spearman with regard to the statistical distribution) and will be interpreted with regard to the recommendations reported in the literature. The variation in mVO2 at 6 months following the engagement in physical activity [assessed by the variation in energy expenditure (number of METs per week)] will be studied by the paired Student test or the Wilcoxon test; Results will be expressed in terms of effect size and 95% confidence interval. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06083194
Study type Observational
Source University Hospital, Clermont-Ferrand
Contact Lise LACLAUTRE
Phone 334.73.754.963
Email promo_interne_drci@chu-clermontferrand.fr
Status Recruiting
Phase
Start date January 14, 2024
Completion date June 2025

See also
  Status Clinical Trial Phase
Completed NCT05528666 - Risk Perception in Multiple Sclerosis
Completed NCT03608527 - Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis N/A
Recruiting NCT05532943 - Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis Phase 1/Phase 2
Completed NCT02486640 - Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
Completed NCT01324232 - Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis Phase 2
Completed NCT04546698 - 5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
Active, not recruiting NCT04380220 - Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
Completed NCT02835677 - Integrating Caregiver Support Into MS Care N/A
Completed NCT03686826 - Feasibility and Reliability of Multimodal Evoked Potentials
Recruiting NCT05964829 - Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis N/A
Withdrawn NCT06021561 - Orofacial Pain in Multiple Sclerosis
Completed NCT03653585 - Cortical Lesions in Patients With Multiple Sclerosis
Recruiting NCT04798651 - Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis N/A
Active, not recruiting NCT05054140 - Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis Phase 2
Completed NCT05447143 - Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis N/A
Recruiting NCT06195644 - Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients Phase 1
Completed NCT04147052 - iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis N/A
Completed NCT03594357 - Cognitive Functions in Patients With Multiple Sclerosis
Completed NCT03591809 - Combined Exercise Training in Patients With Multiple Sclerosis N/A
Completed NCT03269175 - BENEFIT 15 Long-term Follow-up Study of the BENEFIT and BENEFIT Follow-up Studies Phase 4