Clinical Trials Logo

Clinical Trial Summary

The goal of this study is to identify brain centers specifically associated with "initiation of voiding" in patients with neurogenic bladder dysfunction. Currently there is no study that has evaluated brain centers involved in initiation of voiding in patients with neurogenic voiding dysfunction. Patients with neurogenic bladder secondary to etiologies such as Multiple Sclerosis, Parkinson's disease, and Cerebrovascular accidents will be recruited in this study. Patients will be categorized into 2 groups, those who have trouble emptying their bladder and those who urinate appropriately. Our existing and unique functional magnetic resonance imaging (fMRI)/ urodynamics (UDS) platform is an ideal platform to identify brain regions involved in bladder emptying disorders as seen in patients with neurogenic bladder dysfunction and will be used for this study. After characterizing brain regions involved in bladder emptying, the investigator propose to use noninvasive transcutaneous magnetic stimulation in a subset of patients with voiding dysfunction in aim 3.


Clinical Trial Description

Difficulty in bladder emptying (Voiding dysfunction,VD) is a costly urinary condition that leads to urinary tract infections/stones, sepsis, bladder loss, and permanent kidney damage. VD can be present in patients with or without neurologic/brain disorders. Currently the only available therapies for VD include bladder catheters or intermittent self-catheterization. Catheterization is a burden especially in patients with nerve damage, hand skills may be limited. The cost and morbid side effects of catheterizations in patients (blood in the urine, pain, trauma, strictures, and infections) requires investigators to develop new therapies that are beyond the bladder. Such new therapies could target the brain (where bladder control is located). In this proposal, investigators plan to further characterize the brain regions involved in bladder emptying for each patient and ,perform brain modulation, targeting these regions as a possible therapy for VD. Patients with bladder dysfunction will be divided into two groups: Group 1: patients with VD; and Group 2: patients without VD. Specific Aim 1: To evaluate brain pattern in both groups and compare them to each other at the time of bladder emptying. Specific Aim 2: To evaluate reliability of the nerve fibers in the brain and see whether damage to these fibers is related to difficulty emptying the bladder. Specific Aim 3: To perform non-invasive brain stimulation on specific regions of the brain responsible for bladder control to improve bladder emptying. This study is an interventional Study: The investigators have completed a well-powered study on twenty-seven female MS patients during their bladder storage phase. Aims 1 and 2 use the data from previously completed trial and investigators will perform additional imaging analysis on it. Aim 3 is a new and small trial in which investigators planned to modulate the regions of the brain that are related to bladder control. Approximately 16 study participants will be enrolled at Houston Methodist, and 16 throughout the study. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03574610
Study type Interventional
Source The Methodist Hospital Research Institute
Contact
Status Completed
Phase N/A
Start date July 1, 2018
Completion date July 31, 2022

See also
  Status Clinical Trial Phase
Completed NCT05528666 - Risk Perception in Multiple Sclerosis
Completed NCT03608527 - Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis N/A
Recruiting NCT05532943 - Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis Phase 1/Phase 2
Completed NCT02486640 - Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
Completed NCT01324232 - Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis Phase 2
Completed NCT04546698 - 5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
Active, not recruiting NCT04380220 - Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
Completed NCT02835677 - Integrating Caregiver Support Into MS Care N/A
Completed NCT03686826 - Feasibility and Reliability of Multimodal Evoked Potentials
Recruiting NCT05964829 - Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis N/A
Withdrawn NCT06021561 - Orofacial Pain in Multiple Sclerosis
Completed NCT03653585 - Cortical Lesions in Patients With Multiple Sclerosis
Recruiting NCT04798651 - Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis N/A
Active, not recruiting NCT05054140 - Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis Phase 2
Completed NCT05447143 - Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis N/A
Recruiting NCT06195644 - Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients Phase 1
Completed NCT04147052 - iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis N/A
Completed NCT03594357 - Cognitive Functions in Patients With Multiple Sclerosis
Completed NCT03591809 - Combined Exercise Training in Patients With Multiple Sclerosis N/A
Completed NCT02845635 - MS Mosaic: A Longitudinal Research Study on Multiple Sclerosis