View clinical trials related to Lung Injury.
Filter by:Lung protective ventilation with low tidal volumes and low driving pressure are known to reduce mortality in mechanically ventilated patients with acute respiratory failure. This reduction in mortality is known be due to reduction of ventilator induced lung injury that occurs due to high tidal volumes and high driving pressure. When receiving such mechanical ventilation, some patients develop hypercapnia and associated hypercapnic acidosis. Such patients have an increased risk of mortality. While the exact reasons for such increase in mortality is not known, it is recommended to minimise hypercapnia and hypercapnic acidosis during lung protective ventilation. Minimally invasive extracorporeal carbon dioxide removal (ECCO2R) devices are shown to reduce hypercapnia and hypercapnic acidosis. There are several devices that are currently available in the current clinical practice. However, the effect of these devices on reduction in ventilator induced lung injury is not clearly demonstrated. This study aims to assess the use of an ECCO2R device called Prismalung in reducing ventilator induced lung injury. PrismaLung is currently used in our intensive care unit. This assessment is done by measuring interleukins in bronchoalveolar lavage fluid and blood interleukin levels as well as clinical assessment including the reduction of driving pressure.
Perioperative respiratory complications are a major source of morbidity and mortality. Postoperative atelectasis plays a central role in their development. Protective "open lung" mechanical ventilation aims to minimize the occurrence of atelectasis during the perioperative period. Randomized controlled studies have been performed comparing various "open lung" ventilation protocols, but these studies report varying and conflicting effects. The interpretation of these studies is complicated by the absence of imagery supporting the pulmonary impact associated with the use of different ventilation strategies. Imaging studies suggest that the gain in pulmonary gas content in "open lung" ventilation regimens disappears within minutes after the extubation. Thus, the potential benefits of open-lung ventilation appear to be lost if, at the time of extubation, no measures are used to keep the lungs well aerated. Recent expert recommendations on good mechanical ventilation practices in the operating room conclude that there is actually no quality study on extubation. Extubation is a very common practice for anesthesiologists as part of their daily clinical practice. It is therefore imperative to generate evidence on good clinical practice during anesthetic emergence in order to potentially identify an effective extubation strategy to reduce postoperative pulmonary complications.
Patient-ventilator asynchrony (PVA) has deleterious effects on the lungs. PVA can lead to acute lung injury and worsening hypoxemia through biotrauma. Little is known about how PVA affects lung aeration estimated by electric impedance tomography (EIT). Artificial intelligence can promote the detection of PVA and with its help, EIT measurements can be correlated to asynchrony.
Postoperative pulmonary complications (PPCs) remain a frequent event after pump-on cardiac surgery and are mostly characterized by postoperative hypoxemia.These complications are significant contributors to prolonged intensive care unit admissions and an escalation in in-hospital mortality rates. The dual impact of general anesthesia with invasive mechanical ventilation results in ventilator-induced lung injury, while cardiac surgery introduces additional pulmonary insults. These include systemic inflammatory responses initiated by cardiopulmonary bypass and ischemic lung damage consequent to aortic cross-clamping. Contributing factors such as blood transfusions and postoperative pain further exacerbate the incidence of PPCs by increasing the permeability of the alveolo-capillary barrier and disrupting mucociliary functions, often culminating in pulmonary atelectasis. Protective ventilation strategies, inspired by acute respiratory distress syndrome (ARDS) management protocols, involve the utilization of low tidal volumes (6-8mL/kg predicted body weight). However, the uniform application of low tidal volumes, especially when combined with the multifactorial pulmonary insults inherent to cardiac surgery, can precipitate surfactant dysfunction and induce atelectasis. The role of pulmonary surfactant in maintaining alveolar stability is critical, necessitating continuous synthesis to sustain low surface tension and prevent alveolar collapse. The most potent stimulus for surfactant secretion is identified as the mechanical stretch of type II pneumocytes, typically induced by larger tidal volumes. This background sets the foundation for a research study aimed at assessing the safety and efficacy of incorporating sighs into perioperative protective ventilation. This approach is hypothesized to mitigate postoperative hypoxemia and reduce the incidence of PPCs in patients undergoing scheduled on-pump cardiac surgery.
The aim of this study is to collect synchronized data from multiple monitoring techniques of mechanical ventilation (pressure/flow waves from the ventilator, electrical impedance tomography - EIT, esophageal pressure, capnography) in patients ventilated either on intensive care units or during anesthesia and evaluate the data by detailed mathematical analysis, to test three hypotheses: 1. Various published methods of calculation of the expiratory time constant provide different results in most cases. 2. Inhomogeneous ventilation (as described by EIT) affects the form of the expiratory flow curve and thus the calculated expiratory time constants. 3. The calculation of mechanical energy transferred to the lungs is affected by the chosen technique and length of the inspiratory pause maneuver. This study does not test any new or non-standard methods and does not in any way interfere with the course of treatment indicated by the clinician, apart from extending the monitoring techniques.
This clinical trial aims to assess the efficacy of sedation protocol targeting optimal respiratory drive using P0.1 and arousal level compared with conventional sedation strategy (targeting arousal level alone) in patients requiring mechanical ventilation in the medical intensive care unit.
This is a single-center, prospective, physiological study. The study will enroll the traumatic lung injury patient who has at least 2 rib fractures requiring mechanical ventilation being on partially assisted breathing mode and on activity as tolerated (AAT) order with or without C-collar. Once being confirmed to meet the inclusion criteria, the research team will apply the EIT on the patient and start recording as well as perform lung ultrasound in the specific areas of interest in the selected time points of the study. The MV ventilator setting and some vital sign data will be also collected at selected time points of study. The EIT will continuously record from 5 minutes when patient is on supine position, then the investigators will turn patient using positioning wedge pillow to the sides with 30-minute EIT recording each side, lastly, the investigators will turn patient back to supine and continuously record for 30 minutes. The study will use the same protocol to perform in 3 different settings of mechanical ventilation (weaning process) i.) during partially assisted breathing, ii.) during high setting of spontaneous breathing and iii.) during low setting of spontaneous breathing.
Patients presenting to the emergency department (ED) may require breathing support with machines depending on the condition. Throughout the breathing support, the settings on the breathing machines will be tailored to the patient's requirements. These settings are manually adjusted by trained physicians. Currently, there are machines which can automatically change the settings based on real-time specific information obtained from the patient. This study aims to compare the use of machines which require manual adjustments (open-loop conventional ventilators) and machines which can automatically change the settings (closed-loop automated ventilators). Patients will be carefully selected to ensure no harm is caused whilst delivering the best care. This study will look into the duration when patients are receiving optimum settings and levels of oxygen and carbon dioxide in the blood. The outcomes of this study would allow us to identify methods to improve patient care.
The goal of this observational study is to compare pulmonary health parameter measurements from the VQm PHM™ to existing clinical measurements. The main questions it aims to answer are: - Confirm the performance of non-invasive pulmonary health parameter shunt fraction value found on the VQm PHM™ when compared to available reference measurements. - Confirm the performance of non-invasive pulmonary health parameter pulmonary blood flow, functional residual capacity and physiological dead space found on the VQm PHM™ when compared to available reference measurements.
Postoperative respiratory complications (PRC) represent a major public health issue. Majority of PRCs occur once the patient leaves the post-interventional monitoring room. Identifying patients at risk for PRC is therefore an important step for improving their post-operative care. In this context, any clinical marker making it possible to detect early alteration of the respiratory state in the postoperative phase deserves to be evaluated. This study is based on the hypothesis that measuring indices of respiratory variability which is synonymous with "good respiratory health" can be part of these markers. The measurement of respiratory variability will be done in patients with thoracic lung resection surgery before anesthetic induction and in the postoperative phase after extubation. It will be measured using a belt equipped with an external sensor allowing automatic and continuous analysis of thoracic movement by frequency analysis