View clinical trials related to Left Ventricular Dysfunction.
Filter by:Studying the causal roles of components of the renin-angiotensin-aldosterone system (including angiotensin-(1-7) (Ang-(1-7)), angiotensin-converting enzyme 2 (ACE2), Ang II, and ACE), uric acid, and klotho in pediatric hypertension and related target organ injury, including in the heart, kidneys, vasculature, and brain. Recruiting children with a new hypertension diagnosis over a 2-year period from the Hypertension and Pediatric Nephrology Clinics affiliated with Brenner Children's Hospital at Atrium Health Wake Forest Baptist and Atrium Health Levine Children's Hospital. Healthy control participants will be recruited from local general primary care practices. Collecting blood and urine samples to analyze components of the renin-angiotensin-aldosterone system (Ang-(1-7), ACE2, Ang II, ACE), uric acid, and klotho, and measuring blood pressure, heart structure and function, autonomic function, vascular function, and kidney function at baseline, year 1, and year 2. Objectives are to investigate phenotypic and treatment response variability and to causally infer if Ang-(1-7), ACE2, Ang II, ACE, uric acid, and klotho contribute to target organ injury due to hypertension.
The study will include patients with acute heart failure with reduced left ventricular ejection fraction (<40%) triggered by atrial fibrillation (AF) with a heart rate of >130/min. Patients in cardiogenic shock, critical state, or patients requiring emergent electric cardioversion during the first 2 hours will be excluded. The patients will be randomized (1:1) to a strategy of initial intensive heart rate control using continuous infusion of landiolol and boluses of digoxin vs. standard approach to the rate control without the use of landiolol. All patients will receive recommended pharmacotherapy of acute heart failure (diuretics, nitrates, inotropes in patients with signs of low cardiac output - preferentially milrinone or levosimendan). The patients will undergo hemodynamic monitoring, laboratory testing, evaluation of symptoms, and quantification of lung water content by ultrasound for 48 hours. The study will test a hypothesis whether patients treated with initial intensive heart rate control with the preferential use of landiolol will achieve faster heart rate control, compensation of heart failure, and relief of heart failure symptoms without causing hypotension or deterioration of heart failure.
To test the specific research questions, healthy men and age-matched healthy premenopausal females will be enrolled. Subjects will undergo cardiac magnetic resonance imaging and spectroscopy (MRI/MRS) to evaluate cardiac morphology/function and fat metabolism. To acutely elevate myocardial triglyceride content, subjects will be asked to abstain from eating for 2 days (reproducibly causes a significant and physiological increase in myocardial fat deposition, transiently). Subjects will be allowed water and/or an isotonic saline solution in order to maintain hydration status. After screening, subjects will meet with the research coordinator or an investigator for a discussion, with opportunity for questions, before applicable consent forms are obtained. The subject will be screened for metal in or on their body and claustrophobia using a standard MR screening form. A venous blood sample will be taken for measurement of metabolic health, circulating hormones, and systemic inflammation. Imaging will include cine imaging for global morphology and function, tissue tagging for regional tissue deformation, spectroscopy for fat quantification. After baseline images of the heart are obtained, the subject will be asked to squeeze a MR-safe handgrip dynamometer at 30% of their maximum while images of the heart are obtained. Blood pressure will also be measured at rest and during stress. Each MRI will take approximately 90-120 minutes. Aim 1 will test the hypothesis that cardiac steatosis induced left ventricular dysfunction is sexually dimorphic, by comparing age-matched men and premenopausal women before and after 48 of fasting. Subjects will complete the MRI/MRS protocol described above before and after the fasting intervention. Aim 2 will test the hypothesis that estrogen is protective against cardiac steatosis-induced dysfunction, by suppressing ovarian sex hormones with a GnRH antagonist and repeating the fasting studies with and without estrogen add-back. 30 female subjects will be treated with GnRH antagonist and repeat the 48 hour fasting intervention and cardiac MRI/MRS protocol. 15 of the subjects will receive estrogen add-back using a transdermal patch, the other 15 subjects will receive a placebo patch. Aim 3 will test whether plasma and myocardial fatty acid composition is sexually dimorphic, by performing comprehensive plasma and myocardial lipidomics assessment.
COLUMBIA CARDS is a pilot study to understand how COVID-19 affects the heart. It is known that COVID-19 can affect the heart in different ways. COLUMBIA CARDS is studying why some COVID-19 survivors develop clinical conditions such as heart inflammation, fluid buildup, blood clots, and other cardiac problems during or after their COVID-19 illness, and why other ones do not. In this study, we will use cardiovascular magnetic resonance (CMR) and transthoracic echocardiography (TTE) to better understand the impact of COVID-19 on the heart.
This is a randomized, prospective, single-blinded trial to determine the overall rate of successful His-Purkinje conduction system pacing Optimized Trial of Cardiac Resynchronization Therapy (HOT-CRT) versus biventricular pacing using coronary sinus lead (BVP) to compare acute and mid-term outcomes. Acute outcomes include change in QRS duration pre-and post-pacing (degree of QRS narrowing) and incidence of major periprocedural complications (pericardial tamponade, need for lead revision, etc.). Mid-term outcomes include echocardiographic response at 6 months along with a composite clinical outcome of heart failure hospitalization, ventricular arrhythmias, crossover, and all-cause mortality.
Cardiac dysfunction has been reported to be common in patients infected with COVID-19. The aim of this study is to evaluate the clinical importance of cardiac dysfunction in critically ill patients infected with COVID-19.
Intra-Aortic Balloon Pumps (IABP) is a widely used and effective left ventricular adjuvant therapy. IABP is an inflatable device placed in the aorta that inflates with diastole and deflates with systole. The aim of this study is to investigate the outcome of patients treated With IABP, and to evaluate the short-term and long-term outcomes of patients with IABP.
The purpose of this research is to prospectively test and validate the single-lead Low EF algorithm in outpatients in order to test the performance of a single-lead ECG based algorithm to identify people with decreased left ventricular EF.
This prospective study evaluates the mechanisms of benefit of sacubitril/valsartan in a population of outpatients with heart failure with reduced ejection fraction, to investigate the relationship between the effects on left ventricular ejection fraction and volumes and noninvasively hemodynamic echo-derived parameters, as cardiac output and left ventricular filling pressure.
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a public health emergency of international concern. Hospitalized COVID-19-positive patients requiring ICU care is increasing along with the course of epidemic. A large number of these patients developed acute respiratory distress syndrome (ARDS) according to current data. However, the related hemodynamic characteristic has so far been rarely described.