View clinical trials related to Incomplete Spinal Cord Injury.
Filter by:Functional electrical stimulation (FES) has been used to activate paralysed muscles and restore movement after spinal cord injury and stroke. This technology involves the application of low-level electrical currents to the nerves and muscles to cause muscle contraction where the user's ability to achieve that through voluntary means has been lost. Providing control of muscle contraction in a coordinated way can mean that users are able once again to produce functional movements in otherwise paralysed limbs. Routine clinical use is limited to the prevention of drop foot in the lower limb following stroke and occasional therapeutic use in the hand and shoulder. Systems providing functional reach and grasp, however, have not achieved clinical or commercial success. This project aims to develop methods for personalising assistive technology to restore arm function in people with high-level spinal cord injury. The investigators will use a combination of electrical stimulation to elicit forces in muscles no longer under voluntary control, and mobile arm supports to compensate for insufficient muscle force where necessary. The investigators will use computational models specific to an individual's functional limitations to produce patient-specific interventions. The project will be in three phases: building a model to predict the effects of electrical stimulation on a paralysed arm with arm support, development of methodologies using this model to optimise the arm support and stimulation system, and testing of stimulation controllers designed using this approach.
Background: In Switzerland, about 6000 individuals live with the consequences of a spinal cord injury (Brinkhof et al, 2016). One of the major goals after an incomplete spinal cord injury (iSCI) is to regain walking function. To this end, different approaches are used in rehabilitation such as treadmill-based, robotic-assisted (exoskeleton or end-effector) and conventional gait training. According to current literature, the superiority of one of these approaches remains unclear (Mehrholz, Harvey, Thomas, and Elsner, 2017); In the research on gait rehabilitation after iSCI, recent randomized clinical trials (RCTs) found no statistical differences between conventional gait training and robotic-assisted gait training. Nevertheless, according to the comparison of effect sizes obtained from these training, these trials suggested that the conventional training approach leads to larger improvements in gait capacity when compared to robotic-assisted therapy (Field-Fote and Roach, 2011; Nooijen, Ter Hoeve, and Field-Fote, 2009). Therefore, these trials highly recommended further research considering these aspects. However, in clinical settings, the implementation of such systematic and intense training sessions remains challenging. The present study aims to test the hypothesis that conventional training might have larger effect sizes on gait capacity and to evaluate the feasibility of such systematic training in a clinical setting of inpatient rehabilitation. Objectives: To contribute to the current knowledge on best clinical practice in gait rehabilitation within the iSCI population. More specifically, the study objectives are two-fold: A first objective is to compare the effects of conventional training, end-effector based therapy and the combination of these interventions on the gait ability of iSCI. A second objective is the evaluation of the feasibility of systematic gait training protocols in a clinical setting. Participants: Individuals with motor incomplete spinal cord injury (iSCI), presenting a traumatic or non-traumatic iSCI with an injury onset <6 months. Intervention: Participants will be trained in one of the three groups by trained physical therapists during 10 sessions, 3x/week with an average duration of 30 minutes. Outcomes: To attain the first objective the effects will be quantified by the following main outcomes: Walking capacity (independence), walking speed, and safety. Feasibility of the systematic intervention will be evaluated using the drop-outs of therapy interventions.
The purpose of this study is to further establish safety and efficacy of the BQ EMF treatment of chronic SCI subjects who demonstrate stability in The Graded and Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) strength score following a one-month physical therapy run-in period.
The purpose of this study is to develop an algorithmic-based evaluation and treatment approach for wearable robotic exoskeleton (WRE) gait training for patients with neurological conditions.
Background: - Cerebral palsy (CP) is the most common motor disorder in children. CP often causes crouch gait, an abnormal way of walking. Knee crouch has many causes, so no single device or approach works best for everybody. This study s adjustable brace provides many types of walking assistance. Researchers will evaluate brace options to find the best solution for each participant, and whether one solution works best for the group. Objective: - To evaluate a new brace to improve crouch gait in children with CP. Eligibility: - Children 5 17 years old with CP. - Healthy volunteers 5 17 years old. Design: - All participants will be screened with medical history and physical exam. - Healthy volunteers will have 1 visit. They will do motion analysis, EMG, and EEG described below. - Participants with CP will have 6 visits. - Visit 1: <TAB>1. Motion analysis: Balls will be taped to participants skin. This helps cameras follow their movement. <TAB>2. EMG: Metal discs will be taped to participants skin. They measure electrical muscle activity. <TAB>3. Participants knee movement will be tested. <TAB>4. Participants will walk 50 meters. <TAB>5. Participants legs will be cast to make custom braces. - Visit 2: - Participants will wear their new braces and have them adjusted. - Steps 1 3 will be repeated. - EEG: Small metal discs will be placed on the participants scalp. They record brain waves. - Participants will have electrical stimulation of their knees and practice extending them. - Participants will take several walks with the braces in different settings. - Visits 3 5: participants will repeat the walking and some other steps from visit 2. - Visit 6 will repeat visit 2.