View clinical trials related to Hypoxia.
Filter by:Most premature babies require oxygen therapy. There is uncertainty about what oxygen levels are the best. The oxygen levels in the blood are measured using a monitor called a saturation monitor and the oxygen the baby breathes is adjusted to keep the level in a target range. Although there is evidence that lower oxygen levels maybe harmful, it is not known how high they need to be for maximum benefit. Very high levels are also harmful. Saturation monitors are not very good for checking for high oxygen levels. For this a different kind of monitor, called a transcutaneous monitor, is better. Keeping oxygen levels stable is usually done by nurses adjusting the oxygen levels by hand (manual control). There is also equipment available that can do this automatically (servo control). It is not known which is best. Research suggests that different automated devices control oxygen effectively as measured by the readings from their internal oxygen saturation monitoring systems. When compared to free-standing saturation monitors there appears to be variations in measured oxygen levels between devices. This could have important clinical implications. This study aims to show the different achieved oxygen levels when babies are targeted to a set target range. Babies in the study will have both a saturation monitor and a transcutaneous oxygen monitor at the same time. Both types of monitor have been in long term use in neonatal units. For a period of 12 hours, each baby will have their oxygen adjusted automatically using two different internal oxygen monitoring technologies (6 hours respectively). The investigators will compare the range of oxygen levels that are seen between the two oxygen saturation monitoring technologies. The investigators will study babies born at less than 30 weeks gestation, who are at least 2 days old, on nasal high flow and still require added oxygen.
The purpose of this study is to test the efficacy of mild breathing bouts of low oxygen (intermittent hypoxia) combined with transcutaneous electrical spinal cord stimulation on restoring hand function in persons with chronic incomplete spinal cord injury.
This is a Phase I trial evaluating the safety of personalized radiation therapy based on levels of hypoxia identified on FMISO-PET and MRI. All patients will receive a baseline FMISO positron emission tomography (PET) and MRI to identify levels of hypoxia. Patients with tumor hypoxia will receive a higher dose of radiation therapy. Subjects who do not have hypoxic tumors will be treated with the standard-of-care radiation regimen. After fraction 10 of radiation therapy, an additional MRI will be performed. If this interim MRI demonstrates little or no response (as defined in Section 6), an optional boost radiation dose can be administered. Trial enrollment will be conducted in two parts. In Part 1, eight patients will be enrolled. After all eight patients have completed the 30 day dose-limiting toxicity (DLT) period, enrollment will be placed on hold and safety will be evaluated. During the interim analysis, one additional patient will be allowed to be enrolled in the trial. If the trial meets stopping rules as described in Section 11.3, the trial will be re-evaluated by the Data and Safety Monitoring Committee (DSMC) and the Principal Investigator. However, if the rate of DLTs remains below the unacceptable toxicity rate, enrollment will open to the enrollment of eight more patients.
The objective of this study is to compare the effects of twice-a-day 15-minute sessions of inpatient physical therapy (PT) to the standard daily 30 minute sessions. The patient outcomes that will be evaluated will be length of stay, change in functional status, and disposition (home/acute rehab vs. subacute/LTAC/death) in patients admitted with COVID-19.
Inflamed joints in patients with rheumatoid arthritis and psoriatic arthritis are characterized by low oxygen levels and inflammation. We propose to investigate whether tiny bubbles (nanobubbles) when given in a drink can alter oxygen level in joints. These nanobubbles are so small that they can enter the bloodstream when given as a drink. This information will give new information on the role of oxygen in joint inflammation and could possibly lead to new treatment approaches in the future.
The aim of this study is to determine the accuracy of devices called pulse oximeters, which measure blood oxygen by shining light through fingers, ears or other skin, without requiring blood sampling. Study will be used with patients at rest.
The aim of this study is to determine the accuracy of devices called pulse oximeters, which measure blood oxygen by shining light through fingers, ears or other skin, without requiring blood sampling. Study will be used with patients during controlled motion.
The primary objective of this study is to assess the presence of a correlation between the Lung ultrasound score (LUSS) and PaO2/FiO2 in patient presenting with interstitial syndrome (IS) in the ED. The primary end point considers the null hypothesis to be a negative linear distribution for LUSS and PaO2/FiO2 values. Secondary objectives and secondary end points One of the secondary objectives is to assess the correlation between the LUSS and PaCO2 in patient presenting with IS in the ED. The end point of this secondary outcome considers the null hypothesis to be a positive linear distribution for the LUSS and PaCO2 values. Another secondary objective is to determine the influence of the presence of unilateral or bilateral pleural effusion on the correlation between LUSS and PaO2/FiO2. The end point of this secondary outcome considers the null hypothesis to be a negative linear distribution for LUSS and PaO2/FiO in those three sub-groups: absence of pleural effusion group, unilateral pleural effusion group and bilateral pleural effusion group.
To compare prototype pulse oximeter saturation measurements, during normal to low saturation, to saturation measurements made by a multi-wavelength CO-oximeter, taken from arterial blood samples from healthy human subjects.
Establish a pulmonary hypertension registry and biorepository to lead towards a further understanding of the disease.