Clinical Trials Logo

Hypertrophy, Left Ventricular clinical trials

View clinical trials related to Hypertrophy, Left Ventricular.

Filter by:

NCT ID: NCT03482934 Completed - Clinical trials for Hypertrophy, Left Ventricular

Predictors of Left Ventricular Hypertrophy in Hypertensive Patients in Assiut Governorate

Start date: October 1, 2019
Phase:
Study type: Observational

To recognize predictors of left ventricular hypertrophy in hypertensive patients in Assiut government & to recognize the prognostic effect of central blood pressure measurement versus office brachial blood pressure measurement.

NCT ID: NCT03473951 Recruiting - Healthy Clinical Trials

The Relationship Among, Serum Uric Acid, Left Ventricular Hypertrophy and Metabolic Syndrome

Start date: March 26, 2018
Phase:
Study type: Observational

Hyperuricemia is associated with the prevalence of metabolic syndrome and cardiovascular risks in diverse of the population. Whether the dose-response effects on the prevalence of metabolic syndrome and cardiometabolic risks is unclear. The present study is conducted to investigate the relationship between serum uric acid and the prevalence metabolic syndrome and left ventricular hypertrophy.

NCT ID: NCT03415750 Completed - Clinical trials for Hypertrophy, Left Ventricular

Everolimus and Tacrolimus Combination for Regression of Left Ventricular Hypertrophy in Renal Transplants

ENHVIE
Start date: November 2016
Phase: Phase 4
Study type: Interventional

Clinical study with two parallel group to compare the efficacy of everolimus combination + tacrolimus in regression of left ventricular hypertrophy vs tacrolimus + mycophenolate mofetil in renal transplant patients in the maintenance phase.

NCT ID: NCT03332745 Completed - Aortic Stenosis Clinical Trials

Mechanism of Decompensation Evaluation - Aortic Stenosis

MODE-AS
Start date: September 3, 2018
Phase:
Study type: Observational

Aortic stenosis is the most common heart valve disease requiring intervention in high income countries. It is characterised by progressive valvular thickening, and restriction as well is hypertrophy and fibrosis of the left ventricle in response to pressure overload. The pathological processes in the left ventricle that ultimately result in heart failure and death are incompletely understood. Further elucidation of these processes and how they correlate with novel blood biomarkers may help us design new treatments and optimise the timing of surgical intervention. In brief, recruited patients with severe aortic stenosis and scheduled to undergo valve replacement surgery will be invited for some simple tests (blood sampling, ECG, echocardiogram). A septal myocardial biopsy will be taken at the time of surgery and the disease valve retained. These will be examined histologically and pathological changes compared with results obtained from ECG, echocardiogram and blood tests.

NCT ID: NCT03322319 Completed - Clinical trials for Left Ventricular Hypertrophy

Frequency of Cardiac Amyloidosis in the Caribbean's. (TEAM Amylose)

Start date: September 23, 2013
Phase: N/A
Study type: Interventional

The frequency of cardiac amyloidosis among patients presenting with a so-called left ventricular hypertrophy remains unknown. This problem is especially relevant in the Caribbean's, where an amyloidosis-prone mutation of transthyretin gene might be frequent.

NCT ID: NCT03315832 Withdrawn - Clinical trials for Aortic Valve Stenosis

Efficacy of Angiotensin Receptor Blocker Following aortIc Valve Intervention for Aortic STenOsis: a Randomized mulTi-cEntric Double-blind Phase II Study

ARISTOTE
Start date: January 2, 2023
Phase: Phase 2/Phase 3
Study type: Interventional

Aortic stenosis (AS) is the most frequent valvular heart disease in Western countries, with increasing prevalence. Recent guidelines recommend aortic valve intervention (surgical aortic valve replacement [SAVR] or transcatheter aortic valve replacement [TAVR]) in severe AS, as soon as symptoms or left ventricular (LV) dysfunction occur, in order to improve clinical outcome and achieve LV mass (LVM) regression. The highest amount of LVM regression is obtained during the first year. Nevertheless, there is heterogeneity in LV remodeling and residual LV hypertrophy is associated with poorer postoperative improvement in cardiac function and morphology. Incomplete regression of LV hypertrophy at 12 months after SAVR is a powerful predictor of adverse outcome. Yet, the use of specific pharmacological therapy to improve postoperative LVM regression could be an appealing therapeutic option after aortic valve intervention. Renin-angiotensin-aldosterone system blockers (RAASb) and more particularly angiotensin-II receptor blockers (ARBs) are efficient in reducing LVM in hypertensive patients, as emphasized by several meta-analyses. In addition, ARBs improve myocardial relaxation, diastolic function, decreased hypertrophy and may have anti-fibrotic effects. In a recent retrospective study from our group, RAASb prescription after SAVR was associated with increased survival, but confirmation through a randomized trial is mandatory. In a prospective randomized single-center study, the use of candesartan was associated both with LV and LA remodeling as compared to the conventional management. Nevertheless, these results are based on echocardiographic data, which is not the gold standard for the assessment cardiac remodeling, and no placebo or active comparator was tested to control the impact of ARBs in these patients. The primary objective of this Phase II study is to investigate the efficacy of valsartan, introduced postoperatively, as compared to placebo, on 1-year changes in indexed LVM, as assessed by CMR, in patients undergoing aortic valve intervention (SAVR or TAVR) for AS. The secondary objectives are to compare the efficacy of valsartan vs. placebo in terms of one-year changes (difference from baseline) in cardiac function and in cardiac morphology, one-year exercise capacity and one-year changes in biomarkers related to cardiac function. In addition, the assessment of the safety of valsartan will also be considered as secondary objective. The ARISTOTE trial is a multicenter prospective phase II, randomized, double-blind study including patients with the diagnosis of severe AS and indication for valve intervention. The active treatment is valsartan, an orally active, potent, and specific angiotensin II receptor antagonist. Patients will be randomized between 2 groups (valsartan versus placebo) and the treatment will be initiated (80 mg daily) at 5±4 days following aortic valve intervention. The comparative treatment will be a placebo; tablets of valsartan and placebo have a similar appearance and administration mode. Patient in the control group will receive a placebo using the same protocol as the valsartan group. The patients will be cautiously monitored and any adverse events will be collected. The dose will be increased at 160 mg daily 13±2 days after aortic valve intervention and, if well tolerated, for the remaining period of the study. The tolerance will be regularly assessed and dose adjusted according to a pre-specified algorithm.

NCT ID: NCT03219632 Completed - Hypertension Clinical Trials

Fimasartan on Hypertensive Cardiac Disease With Left Ventricular Hypertrophy Estimated by ECG

Start date: June 5, 2012
Phase: N/A
Study type: Observational [Patient Registry]

Assess the efficacy of fimasartan on left ventricular hypertrophy in hypertensive patients

NCT ID: NCT03193073 Suspended - Clinical trials for Endothelial Dysfunction

Anemia Correction and Fibroblast Growth Factor 23 Levels in Chronic Kidney Disease , and Renal Transplant Patient

Start date: September 1, 2018
Phase: N/A
Study type: Interventional

The fibroblast growth factor-23-bone-kidney axis is part of newly discovered biological systems linking bone to other organ functions through a complex endocrine network that is integrated with the parathormone/vitamin D axis and which plays an equally important role in health and disease . Most of the known physiological function of fibroblast growth factor 23 to regulate mineral metabolism can be accounted for by actions of this hormone on the kidney.In a recent experimental study, fibroblast growth factor-23 was shown to cause pathological hypertrophy in rat cardiomyocytes by "calcineurin-nuclear factor of activated T cells" and treatment with fibroblast growth factor -blockers reduced left ventricular hypertrophy in experimental models of chronic renal failure.The current hypothesis is that, in healthy individuals, iron deficiency stimulates increased production of fibroblast growth factor23. At the same time, iron is thought to be the cofactor of enzymes taking part in the degradation of intact fibroblast growth factor-23 and thought to have a role in the excretion of degraded FGF-23 parts .Studies speculated that Angiotensin Converting Enzyme inhibitors may exert their anti-proteinuria effects at least in part by reducing serum fibroblast growth factor-23 levels although it is difficult from the results of this study to understand which comes first and brings about the other; decrease in proteinuria or fibroblast growth factor-23. Available evidence points to the deleterious effects of increased fibroblast growth factor-23 level in proteinuria, but the precise molecular mechanism still remains to be explored. An intricate and close association exists among parathormone, phosphorus, active vitamin D with FGF23, but the independent role of the latter on proteinuria is the least explored. Elaborately conducted studies that control effects of confounding factors adequately are needed to demonstrate the independent pathogenic role of FGF23.

NCT ID: NCT03186742 Completed - Clinical trials for Obstructive Sleep Apnea

Reduction of Left Ventricular Hypertrophy After Eplerenone Therapy

Start date: July 1, 2014
Phase: Phase 4
Study type: Interventional

Obstructive sleep apnea syndrome (OSA) is the most frequent sleep disorder characterized by excessive decrease in muscle tone of the soft palate, the tongue and the posterior pharyngeal wall. It leads to airway collapse. In cases of decreased airway passage hypoventilation (hypopnea) occurs while periodic lack of airflow is called apnea. An obstructive sleep apnea syndrome is recognized as an independent cardiovascular risk factor. OSA is very common in patients with resistant hypertension. RAH is diagnosed when blood pressure remains elevated despite simultaneous use of 3 antihypertensive agents from different groups of drugs at optimal to maximum doses, including a diuretic. In patients with OSA frequent episodes of hypoxemia during sleep result in the repeated activation of the sympathetic nervous system. What is more, the episodes of respiratory disorders increases in levels of aldosterone serum concentration with following sodium and water retention and elevation of blood pressure finally. An increased aldosterone level also stimulates synthesis of collagen, promotes stiffening of the arterial wall, myocardial fibrosis with heart muscle remodeling and takes part in development of left ventricular hypertrophy (LVH) - common complication of hypertensive patients with OSA. Several studies, including the Sleep Heart Health Study have confirmed that severe OSA is associated with high prevalence of concentric hypertrophy through sympathetic activation and vasoconstriction. Eplerenone is a selective mineralocorticoid receptor inhibitor. It has no affinity for glucocorticoid, progesterone and androgen receptors and therefore has lower risk of side effects. Eplerenone lowers blood pressure and inhibits heart muscle fibrosis. The hypotensive effect is caused by reduction of fluid retention. Probably, in patients with OSA, a reduction of fluid accumulation especially at the level of the neck may contribute to lowering the resistance in the upper respiratory tract and in that way it may help to decrease the severity of OSA. As LVH remains a strong and independent predictor of total mortality and death from cardiovascular causes, in this study we want to assess whether the addition of Eplerenone to a standard antihypertensive therapy will favorably change left ventricular geometry. We also want to check if the addition the Eplerenone to a standard antihypertensive therapy could be an effective therapeutic option for patients with OSA and RAH.

NCT ID: NCT03182699 Completed - Clinical trials for Secondary Hyperparathyroidism

Effect of Etelcalcetide on Cardiac Hypertrophy in Hemodialysis Patients

EtECAR-HD
Start date: October 1, 2017
Phase: Phase 4
Study type: Interventional

Background: Calcimimetic therapy has been shown to reduce systemic FGF23 levels, which themselves are associated with left ventricular hypertrophy (LVH) in chronic kidney disease (CKD). Methods/design: This is a randomized multicenter trial in which the effect of etelcalcetide in comparison to alfacalcidol on LVH and cardiac fibrosis in hemodialysis patients with secondary hyperparathyroidism (sHPT) will be investigated. The investigators will perform a comparative trial testing etelcalcetide vs. alfacalcidol treatment on top of conventional HPT therapy for 12 months. A total of 62 hemodialysis patients with sHPT and LVH will be enrolled in the study. After a washout of all calcimimetic and vitamin D treatment, subjects will be randomized at 1:1 ratio to either etelcalcetide or alfacalcidol. The participants will undergo cardiac imaging consisting of cardiac resonance imaging (cMRI) and strain echocardiography before and at baseline and one year. Etelcalcetide or alfacalcidol will be administered intravenously three times per week following chronic hemodialysis treatment. The primary end point will be a change in left ventricular mass index (LVMI) measured in g/m2. As secondary end points the changes in left atrial diameter (LAD), cardiac fibrosis, wall motion abnormalities and left ventricular function, changes in serum FGF 23 and soluble Klotho levels as well as changes in proBNP as well as pre- and postdialysis troponin T (TnT) levels will be determined. Additionally a quantitative analysis of the treatment influence on the individual metabolites of the renin-angiotensin-aldosterone system (RAAS) will be performed using mass spectrometry ("RAAS fingerprint").