Clinical Trials Logo

Hyperinsulinism clinical trials

View clinical trials related to Hyperinsulinism.

Filter by:

NCT ID: NCT05733455 Completed - Insulin Resistance Clinical Trials

Effect of Alpelisib in Healthy Volunteers

Start date: May 9, 2023
Phase: Phase 1
Study type: Interventional

The goal of this clinical trial is to test a single dose of the phosphoinositide-3-kinase (PI3K) inhibitor alpelisib versus placebo in healthy volunteers. The main questions it aims to answer are the impact of acute alpelisib-induced insulin resistance on parameters of glucose and lipid metabolism (how healthy people respond to temporary insulin resistance so that the investigators can see what happens to how the liver handles fat and sugar). Participants will: - Consume their total calculated daily caloric needs in nutritional supplements, divided in three meals, and otherwise fast for 24 hours - Take a dose of alpelisib 300 mg or placebo at bedtime - Wear a continuous glucose monitor for 72 hours - Participate in an oral glucose tolerance test (OGTT) Researchers will compare blood tests before and during OGTT in participants randomized (like the flip of a coin) to alpelisib versus placebo to see how the drug treatment affects plasma glucose, serum insulin, and serum lipid parameters (triglycerides, free fatty acids, and apolipoprotein B).

NCT ID: NCT05729282 Recruiting - Insulin Resistance Clinical Trials

Glycemic Effect of Diazoxide in NAFLD

Start date: August 1, 2023
Phase: Phase 1
Study type: Interventional

The goal of this clinical trial is to compare a two-week course of diazoxide (at two different doses) and placebo in people with overweight/obesity and insulin resistance (IR) with, or at high risk for, non-alcoholic fatty liver disease (NAFLD). The main questions it aims to answer are how mitigation of compensatory hyperinsulinemia with diazoxide affects parameters of glucose and lipid metabolism (how people with IR and NAFLD respond to lowering high insulin levels so that the investigators can see what happens to how the liver handles fat and sugar). Participants will: - Take 27 doses of diazoxide (at 1 mg per kg of body weight per dose [mpk] or 2 mpk) or of placebo, over 14 days - Take 32 doses of heavy (deuterated) water (50 mL each) over 14 days - Have blood drawn and saliva collected after an overnight fast on four mornings over the two-week study period - Consume their total calculated daily caloric needs as divided into three meals per day - Wear a continuous glucose monitor for the two-week study period Researchers will compare fasting blood tests at intervals during the study period in participants randomized (like the flip of a coin) to diazoxide 1 mpk, diazoxide 2 mpk, or placebo, to see how the drug treatment affects plasma glucose, serum insulin, and serum lipid parameters (triglycerides, free fatty acids, and apolipoprotein B). They will also consume heavy (deuterated) water to assess de novo lipogenesis (building of new fatty acids by the liver).

NCT ID: NCT05724134 Recruiting - Obesity Clinical Trials

Pancreatic Clamp in NAFLD

Start date: August 29, 2023
Phase: Phase 1
Study type: Interventional

This is a single-center, prospective, randomized, controlled (crossover) clinical study designed to investigate the specific dose-response impact of insulin infusion rate (IIR) on blood glucose levels during a pancreatic clamp study. The investigators will recruit participants with a history of overweight/obesity and evidence of insulin resistance (i.e., fasting hyperinsulinemia plus prediabetes and/or impaired fasting glucose and/or Homeostasis Model Assessment of Insulin Resistance [HOMA-IR] score >=2.73), and with evidence of, or clinically judged to be at high risk for, uncomplicated non-alcoholic fatty liver disease (NAFLD). Participants will undergo two pancreatic clamp procedures in which individualized basal IIR are identified, followed in one by maintenance of basal IIR (maintenance hyperinsulinemia, MH) and in the other by a stepped decline in IIR (reduction toward euinsulinemia, RE). In both clamps the investigators will closely monitor plasma glucose and various metabolic parameters. The primary outcome will be the absolute and relative changes in steady-state plasma glucose levels at each stepped decline in IIR.

NCT ID: NCT05662189 Recruiting - type1diabetes Clinical Trials

Assessment of Pancreatic Beta Cell Mass and Function by Positron Emission Tomography Imaging in Human Diabetes Mellitus

Start date: March 15, 2022
Phase: N/A
Study type: Interventional

The goals of this project are to build an experimental tool to dissect out in vivo pancreatic beta cell mass (BCM) and beta cell function (BCF) and to assess for the first time these two determinants of beta cell functional mass (BCFxM) in obesity and in various stages of type 1 and type 2 diabetes mellitus.

NCT ID: NCT05543083 Recruiting - Depression Clinical Trials

Cognitive-Behavioral Therapy and Exercise Training in Adolescents At-Risk for Type 2 Diabetes

CBTeX
Start date: June 2, 2023
Phase: N/A
Study type: Interventional

The investigators are doing this study to learn more about how to prevent type 2 diabetes in teenage girls. The purpose of this study is to find out if taking part in a cognitive-behavioral therapy group, exercise training group, or a combination of cognitive-behavioral therapy and exercise training groups, decreases stress, improves mood, increases physical activity and physical fitness, and decreases insulin resistance among teenagers at risk for diabetes.

NCT ID: NCT05528874 Completed - Hyperglycemia Clinical Trials

NUTRACORE, Glycaemic Index and Appetite

NTRCR-vivo
Start date: April 22, 2022
Phase: N/A
Study type: Interventional

In recent decades, the world prevalence of obesity and type 2 diabetes (DMT2) has increased dramatically, resulting in a global epidemic. One of the aspects more connected to the etiology of these pathologies is undoubtedly the concept of the glycemic index (GI) and glycemic load (CG). It has been shown that, with the same CG, that is of carbohydrates contained in a food, a food with a higher GI tends to raise blood sugar more quickly (and consequently insulin), causing several negative effects on the body. We now have sufficient evidence to show that high GI diets are associated with increased incidence of DMT2, hyperlipoproteinemia, and cardiovascular disease. Although simple carbohydrates, namely sugars, have always been considered the major inducers of hyperglycemia and hyperinsulinemia, in reality also starches, or complex carbohydrates digestible by humans, may lead to an increase in blood sugar levels which is not as rapid but often equally harmful to health, since the GC is generally higher. The reason why a high GI diet is responsible for this increased risk of developing pathologies is not unambiguous. We can identify at least 4 probable mechanisms. 1. Sudden hyperglycemia tends to cause insulin to rise beyond what is necessary, leading subsequently to the risk of hypoglycemia and thus an excessive feeling of hunger. Increased energy intake and obesity. 2. Excess insulin secretion, aggravated by insulin resistance, represents an effort for the pancreas with the risk, over time, to arrive at a deficit of insulin-dependent diabetes type 2 insulin production 3. Hyperinsulinemia is also associated with reduced lipolysis and increased lipogenesis obesity and hyperlipoproteinemia 4. Fat accumulation, especially in the abdominal region, is associated with chronic inflammation and insulin resistance by type 2 diabetes tissues and metabolic syndrome In addition to these reasons, a high GI diet, typically called Western Diet, is also generally deficient in plant foods, rich in antioxidants and photo compounds with anti-inflammatory action, without which the process of chronic organic inflammation is accelerated, even in the absence of real obesity.

NCT ID: NCT05329337 Completed - Insulin Resistance Clinical Trials

Link Between the Peripheral Mononuclear Cells' Capacity to Induce Insulin Resistance and Hyperinsulinemia

IRACTIV
Start date: June 27, 2022
Phase: N/A
Study type: Interventional

This is a two-center proof-of-concept study, ancillary to the MetACTIV study, whose objective is to define immune activation profiles from the data of individuals followed by the Caisse Primaire d'Assurance Maladie du Gard (health insurance fund). The IRACTIV study will include a subset of volunteers from the MetACTIV study for whom a blood sample will be taken as part of the IRACTIV study.

NCT ID: NCT05135234 Active, not recruiting - Sedentary Lifestyle Clinical Trials

Developing a Physiological Understanding of High Duration Activity

Start date: August 2016
Phase: N/A
Study type: Interventional

When muscles are not contracting, the local energy demand by muscle and use of specific fuels used to produce energy by oxidative metabolism are minimal. The time people spend sitting inactive (sedentary time) typically comprises more than half of the day. This sedentary behavior is associated with elevated risk of diabetes, cardiovascular diseases, some cancers, and multiple conditions leading to poor aging. From a progressive series of experiments, the driving goal is to develop a physiological method for sustaining contractile activity via oxidative metabolism over more time than is possible by traditional exercise (hours, not minutes per day). Developing a physiological method suitable of prolonged muscular activity for ordinary people (who are often unfit) requires gaining fundamental insights about muscle biology and biomechanics. This also entails a careful appreciation of the ability to isolate specific muscles in the leg during controlled movements, such as the soleus muscle during isolated plantarflexion. This includes quantifying specific biological processes that are directly responsive to elevated skeletal muscle recruitment. The investigators will focus on movement that is safe and practical for ordinary people to do given their high amount of daily sitting time. This includes developing methods to optimally raise muscle contractile activity, in a way that is not limited by fatigue, and is feasible throughout as many minutes of the day as possible safely. This also requires development of methodologies to quantify specific muscular activity, rather than generalized body movement. There is a need to learn how much people can increase muscle metabolism by physical activity that is perceived to them as being light effort. It is important to learn if this impacts systemic metabolic processes under experimental conditions over a short term time span in order to avoid confounding influences of changes in body weight or other factors.

NCT ID: NCT05126199 Recruiting - Insulin Resistance Clinical Trials

Time-restricted Eating to Improve Metabolic Abnormalities in Polycystic Ovarian Syndrome

TimeMAP
Start date: May 5, 2021
Phase: N/A
Study type: Interventional

Polycystic ovarian syndrome (PCOS) is associated with metabolic symptoms such as hyperinsulinemia. Time-restricted eating may reduce serum insulin and improve insulin resistance in patients with PCOS. Currently, there are few studies investigating time-restricted eating in patients with PCOS. The investigators plan to test the feasibility of time-restricted eating in the management of PCOS by means of a real-world clinical intervention. The investigators will determine if an 18:6 eating protocol reduces insulin levels by means of a randomised controlled crossover trial.

NCT ID: NCT05088798 Recruiting - Hyperinsulinism Clinical Trials

Utility of 18FDOPA PET/MRI for Focal Hyperinsulinism

18FDOPA HI
Start date: September 10, 2020
Phase: Phase 2
Study type: Interventional

The purpose of the study is to provide access to 18F-DOPA PET to patients at Washington University and assess the utility of 18F-DOPA PET/MRI as a preoperative tool to detect and localize focal lesions in the pancreas that are causing hyperinsulinism.