Clinical Trials Logo

Hydrocephalus clinical trials

View clinical trials related to Hydrocephalus.

Filter by:

NCT ID: NCT06310213 Not yet recruiting - Clinical trials for Hydrocephalus in Infants

Non-Invasive Pressure Monitor for Neonates & Infants at Risk of Developing Hydrocephalus

Start date: April 1, 2024
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to test a modified smart soft contact lens in neonates and infants at risk of developing hydrocephalus. The main questions it aims to answer are: - Can the device distinguish between intracranial pressure variations in neonates and infants diagnosed with hydrocephalus and those without - Can the device compare pressure dynamics between pre- and post-operative periods in neonates and infants who undergo surgical treatments Participants will undergo standard of care evaluations for hydrocephalus (anterior fontanelle assessment and head circumference measurement) and wear the device during standard of care evaluation; pre- and post- ventricular reservoir taps, as applicable; and/or pre- and post-operatively, as applicable.

NCT ID: NCT06276543 Not yet recruiting - Hydrocephalus Clinical Trials

Bactiseal Catheter Safety Registry Study

Start date: June 1, 2024
Phase:
Study type: Observational

Research Purpose: This study aims to continuously evaluate the safety of subjects implanted with a catheter (trade name: Bactiseal) produced by Integra LifeSciences Production Corporation. Device safety will be assessed based on all the adverse events that occurred within 2 years after implanted the catheter. Research Design: This study is designed to be single arm, multi-center, and retrospective. A total of 200 subjects will be retrospectively enrolled. Information will be collected on adverse events, including bacterial culture and drug resistance testing when infection (if done), of subjects enrolled within 2 years after the implantation of the Bactiseal Catheter between January 01, 2019 and June 30, 2022. The following information will be collected from subjects' medical records or hospitals' databases (if any): 1. General condition of the subjects (including previous shunting and external drainage operation) 2. Intraoperative condition and catheter implantation 3. Information on the shunt catheters 4. Adverse events of subjects within 2 years after the operation and classification of the adverse events (except anticipated adverse events listed in section 8.1.2) 5. Relevant examinations in case of postoperative infection, including bacterial culture and drug resistance testing (if done)

NCT ID: NCT06253858 Not yet recruiting - Hydrocephalus Clinical Trials

Ultrasound (US) Guided External Ventricular Catheter Placement

Start date: July 1, 2024
Phase: N/A
Study type: Interventional

To assess the accuracy the SOLOPASS® System US based in the placement of external ventricular drain into the cranial cavity. This study will aim at evaluating the proposed efficacy of the device in targeting the brain ventricles and decrease multiple brain passes, incorrect deployment and malfunctioning of the drain.

NCT ID: NCT06147414 Not yet recruiting - Cystic Fibrosis Clinical Trials

Development of Non-Invasive Prenatal Diagnosis for Single Gene Disorders

DANNIgene
Start date: April 2024
Phase:
Study type: Observational

Cell-free fetal DNA (cffDNA) is present in the maternal blood from the early first trimester of gestation and makes up 5%-20% of the total circulating cell-free DNA (cfDNA) in maternal plasma. Its presence in maternal plasma has allowed development of noninvasive prenatal diagnosis for single-gene disorders (SGD-NIPD). This can be performed from 9 weeks of amenorrhea and offers an early, safe and accurate definitive diagnosis without the miscarriage risk associated with invasive procedures. One of the major difficulties is distinguishing fetal genotype in the high background of maternal cfDNA, which leads to several technical and analytical challenges. Besides, unlike noninvasive prenatal testing for aneuploidy, NIPD for monogenic diseases represent a smaller market opportunity, and many cases must be provided on a bespoke, patient- or disease-specific basis. As a result, implementation of SGD-NIPD remained sparse, with most testing being delivered in a research setting. The present project aims to take advantage of the unique French collaborative network to make SGD-NIPD possible for theoretically any monogenic disorder and any family.

NCT ID: NCT06132139 Not yet recruiting - Clinical trials for Subarachnoid Hemorrhage

VisAR Augmented Reality Navigation of Ventriculostomy

Start date: July 2024
Phase: N/A
Study type: Interventional

This study is intended to evaluate the feasibility of using VisAR augmented reality surgical navigation during placement of an external ventricular drain (EVD). The investigators are interested in confirming the design of the VisAR headset is compatible with this bedside procedure.

NCT ID: NCT06129565 Not yet recruiting - Clinical trials for Low Pressure Hydrocephalus

The Use of Q-Collar to Increase CSF Drainage in Low-pressure Hydrocephalus Patients

Start date: June 2024
Phase: N/A
Study type: Interventional

The investigators hypothesize that the Q-collar compression on bilateral internal jugular veins of patients with low pressure hydrocephalus will decrease venous drainage from the intracranial space, therefore increasing intracranial volume, decreasing brain compliance, and increasing CSF drainage through the shunt. This should improve persistent hydrocephalus symptoms and demonstrate improved ventricular drainage on imaging with decompressed ventricles.

NCT ID: NCT06086561 Recruiting - Hydrocephalus Clinical Trials

Longitudinal Measurements of Flow in Cerebrospinal Fluid Shunts With a Wireless Thermal Anisotropy Measurement Device

Start date: November 17, 2023
Phase: N/A
Study type: Interventional

This study evaluates the performance of a device for non-invasively assessing cerebrospinal fluid (CSF) shunt flow. Patients with an existing implanted shunt will wear the device to acquire longitudinal data.

NCT ID: NCT06083233 Recruiting - Brain Damage Clinical Trials

Role of Brain Specific Biomarkers in Hydrocephalus

Start date: November 1, 2023
Phase: N/A
Study type: Interventional

Normal pressure hydrocephalus (NPH) is a neurodegenerative disease of unclear etiology characterized by a clinical trias named after the neurosurgeon Hakim. It includes cognitive impairment (dementia), gait disturbance, and urinary incontinence. These symptoms, which frequently occur in the elderly population, often overlap with the symptoms of "other" neurodegenerative diseases, especially Alzheimer's disease and other (pre)senile dementias. To distinguishing NPH from "other" dementias is crucial in determining whether a patient will benefit from a surgical procedure (ventriculoperitoneal shunt placement) or not. At the same time, the options for assessing the patient's condition's progression and distinguishing between the progression of neurodegeneration in a broader sense or malfunction of the drainage system are very limited. Therefore, the role of a biomarker that could meet these expectations mentioned above is highly desirable.

NCT ID: NCT06040697 Recruiting - Hydrocephalus Clinical Trials

Formative Usability Assessment of Wireless Thermal Anisotropy Devices

Start date: September 29, 2023
Phase:
Study type: Observational

Measurements of shunt flow will be performed non-invasively. This study will generate usability data via observed tasks and comprehension questions to enable future device design improvements.

NCT ID: NCT06018545 Active, not recruiting - Clinical trials for Acute Ischemic Stroke

AI Assisted Reader Evaluation in Acute Computed Tomography (CT) Head Interpretation

AI-REACT
Start date: June 1, 2023
Phase:
Study type: Observational

This study has been added as a sub study to the Simulation Training for Emergency Department Imaging 2 study (ClinicalTrials.gov ID NCT05427838). The purpose of the study is to assess the impact of an Artificial Intelligence (AI) tool called qER 2.0 EU on the performance of readers, including general radiologists, emergency medicine clinicians, and radiographers, in interpreting non-contrast CT head scans. The study aims to evaluate the changes in accuracy, review time, and diagnostic confidence when using the AI tool. It also seeks to provide evidence on the diagnostic performance of the AI tool and its potential to improve efficiency and patient care in the context of the National Health Service (NHS). The study will use a dataset of 150 CT head scans, including both control cases and abnormal cases with specific abnormalities. The results of this study will inform larger follow-up studies in real-life Emergency Department (ED) settings.