Clinical Trials Logo

Hydrocephalus clinical trials

View clinical trials related to Hydrocephalus.

Filter by:
  • Not yet recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06368648 Not yet recruiting - Stroke Clinical Trials

CoMind Early Feasibility Study

CoMind EFS
Start date: June 2024
Phase:
Study type: Observational

The purpose of this research, which has been determined as non-significant risk by the central IRB overseeing the study, is to obtain information to help further develop a machine (a medical device) to measure the pressure around the brain from the outside (this pressure is called intracranial pressure or ICP). Monitoring and managing ICP is an important part of care for patients with conditions such as Traumatic Brain Injury (TBI). However, the current way of measuring ICP requires surgery to drill a hole into the skull, and therefore can introduce additional risks such as infections and pain. Recent research has shown it may be possible to measure ICP without needing surgery. This technology is in development, but large amounts of data is required to build these new devices. Through collecting a large database of information from patients who have both the routine surgical device and the research device applied to their head, the research team will work to develop and test an effective and potentially safer way of monitoring patient ICP.

NCT ID: NCT06341946 Not yet recruiting - Hydrocephalus Clinical Trials

Role of Endoscopic Third Ventriculostomy in Management of Malfunctioning Ventriculoperitoneal Shunt

Start date: April 5, 2024
Phase: N/A
Study type: Interventional

The aim of this study is to analyze our experience in management of malfunctioning ventriculoperitoneal shunt by using endoscopic third ventriculostomy (ETV).

NCT ID: NCT06310213 Not yet recruiting - Clinical trials for Hydrocephalus in Infants

Non-Invasive Pressure Monitor for Neonates & Infants at Risk of Developing Hydrocephalus

Start date: April 1, 2024
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to test a modified smart soft contact lens in neonates and infants at risk of developing hydrocephalus. The main questions it aims to answer are: - Can the device distinguish between intracranial pressure variations in neonates and infants diagnosed with hydrocephalus and those without - Can the device compare pressure dynamics between pre- and post-operative periods in neonates and infants who undergo surgical treatments Participants will undergo standard of care evaluations for hydrocephalus (anterior fontanelle assessment and head circumference measurement) and wear the device during standard of care evaluation; pre- and post- ventricular reservoir taps, as applicable; and/or pre- and post-operatively, as applicable.

NCT ID: NCT06276543 Not yet recruiting - Hydrocephalus Clinical Trials

Bactiseal Catheter Safety Registry Study

Start date: June 1, 2024
Phase:
Study type: Observational

Research Purpose: This study aims to continuously evaluate the safety of subjects implanted with a catheter (trade name: Bactiseal) produced by Integra LifeSciences Production Corporation. Device safety will be assessed based on all the adverse events that occurred within 2 years after implanted the catheter. Research Design: This study is designed to be single arm, multi-center, and retrospective. A total of 200 subjects will be retrospectively enrolled. Information will be collected on adverse events, including bacterial culture and drug resistance testing when infection (if done), of subjects enrolled within 2 years after the implantation of the Bactiseal Catheter between January 01, 2019 and June 30, 2022. The following information will be collected from subjects' medical records or hospitals' databases (if any): 1. General condition of the subjects (including previous shunting and external drainage operation) 2. Intraoperative condition and catheter implantation 3. Information on the shunt catheters 4. Adverse events of subjects within 2 years after the operation and classification of the adverse events (except anticipated adverse events listed in section 8.1.2) 5. Relevant examinations in case of postoperative infection, including bacterial culture and drug resistance testing (if done)

NCT ID: NCT06253858 Not yet recruiting - Hydrocephalus Clinical Trials

Ultrasound (US) Guided External Ventricular Catheter Placement

Start date: July 1, 2024
Phase: N/A
Study type: Interventional

To assess the accuracy the SOLOPASS® System US based in the placement of external ventricular drain into the cranial cavity. This study will aim at evaluating the proposed efficacy of the device in targeting the brain ventricles and decrease multiple brain passes, incorrect deployment and malfunctioning of the drain.

NCT ID: NCT06147414 Not yet recruiting - Cystic Fibrosis Clinical Trials

Development of Non-Invasive Prenatal Diagnosis for Single Gene Disorders

DANNIgene
Start date: April 2024
Phase:
Study type: Observational

Cell-free fetal DNA (cffDNA) is present in the maternal blood from the early first trimester of gestation and makes up 5%-20% of the total circulating cell-free DNA (cfDNA) in maternal plasma. Its presence in maternal plasma has allowed development of noninvasive prenatal diagnosis for single-gene disorders (SGD-NIPD). This can be performed from 9 weeks of amenorrhea and offers an early, safe and accurate definitive diagnosis without the miscarriage risk associated with invasive procedures. One of the major difficulties is distinguishing fetal genotype in the high background of maternal cfDNA, which leads to several technical and analytical challenges. Besides, unlike noninvasive prenatal testing for aneuploidy, NIPD for monogenic diseases represent a smaller market opportunity, and many cases must be provided on a bespoke, patient- or disease-specific basis. As a result, implementation of SGD-NIPD remained sparse, with most testing being delivered in a research setting. The present project aims to take advantage of the unique French collaborative network to make SGD-NIPD possible for theoretically any monogenic disorder and any family.

NCT ID: NCT06132139 Not yet recruiting - Clinical trials for Subarachnoid Hemorrhage

VisAR Augmented Reality Navigation of Ventriculostomy

Start date: March 2024
Phase: N/A
Study type: Interventional

This study is intended to evaluate the feasibility of using VisAR augmented reality surgical navigation during placement of an external ventricular drain (EVD). The investigators are interested in confirming the design of the VisAR headset is compatible with this bedside procedure.

NCT ID: NCT06129565 Not yet recruiting - Clinical trials for Low Pressure Hydrocephalus

The Use of Q-Collar to Increase CSF Drainage in Low-pressure Hydrocephalus Patients

Start date: November 2023
Phase: N/A
Study type: Interventional

The investigators hypothesize that the Q-collar compression on bilateral internal jugular veins of patients with low pressure hydrocephalus will decrease venous drainage from the intracranial space, therefore increasing intracranial volume, decreasing brain compliance, and increasing CSF drainage through the shunt. This should improve persistent hydrocephalus symptoms and demonstrate improved ventricular drainage on imaging with decompressed ventricles.

NCT ID: NCT06083233 Not yet recruiting - Brain Damage Clinical Trials

Role of Brain Specific Biomarkers in Hydrocephalus

Start date: November 1, 2023
Phase: N/A
Study type: Interventional

Normal pressure hydrocephalus (NPH) is a neurodegenerative disease of unclear etiology characterized by a clinical trias named after the neurosurgeon Hakim. It includes cognitive impairment (dementia), gait disturbance, and urinary incontinence. These symptoms, which frequently occur in the elderly population, often overlap with the symptoms of "other" neurodegenerative diseases, especially Alzheimer's disease and other (pre)senile dementias. To distinguishing NPH from "other" dementias is crucial in determining whether a patient will benefit from a surgical procedure (ventriculoperitoneal shunt placement) or not. At the same time, the options for assessing the patient's condition's progression and distinguishing between the progression of neurodegeneration in a broader sense or malfunction of the drainage system are very limited. Therefore, the role of a biomarker that could meet these expectations mentioned above is highly desirable.

NCT ID: NCT05562596 Not yet recruiting - Clinical trials for Cognitive Impairment

Normal Pressure Hydrocephalus Biomarkers Investigation

NORPHY
Start date: October 30, 2022
Phase:
Study type: Observational

Normal Pressure Hydrocephalus (NPH) is a clinical condition that induces cognitive deterioration that can be reverted, at least in part, by introducing ventricular-peritoneal diversion controlled by a miniaturized valve system. Mechanisms involved in such an improvement of cognitive function after liquor diversion are unknown. Oxysterols are a family of cholesterol-related compounds having diverse biological functions. Among others, they are involved in cholesterol homeostasis in the brain and are detectable in liquor, potentially impacting neurodegeneration. NPH is an ideal clinical model to study oxysterol distribution in liquor before and after ventricular-peritoneal diversion.