Healthy Clinical Trial
— VNS001Official title:
The Effect Of Transcutaneous Auricular Vagus Nerve Stimulation On Sports Performance And Physiological Parameters In Healthy Young Individuals: Randomized, Double-Blind Study
Verified date | February 2021 |
Source | Sinop University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
OBJECTIVE: The aim of this study is to investigate the effect of non-invasive auricular VNS (Vagus Nerve Stimulation) on sportive performance and physiological parameters in healthy individuals. MATERIAL AND METHOD: 46 healthy young individuals aged 19.2(±1.5) years participated in the study. The participants were randomly divided into 3 groups as Above Threshold Group (n:15; 10 females, 5 males), Under Threshold Group (n:15; 10 females, 5 males) and Control Group (no stimulation) (n:16; 11 females, 5 males) according to the sensation of electrical current on ears. The participants were evaluated 3 times; before the application, after the first and second bicycle exercises. Numerical pain scale (NPS), pulse rate, blood pressure, respiratory rate, and distance travelled during exercise for sportive performance were recorded in kilometers as the evaluation method. The stimulation was done during the first bicycle exercise with 5 minutes of duration. The Kruskal-wallis, mann-whitney u test were used for the quantitative independent data obtained. In the analysis of qualitative independent data, chi-squared test was used.
Status | Completed |
Enrollment | 46 |
Est. completion date | November 1, 2020 |
Est. primary completion date | February 1, 2020 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 27 Years |
Eligibility | Inclusion Criteria: - 18-35 years age - Being healthy Exclusion Criteria: - any known disease - any drug usage |
Country | Name | City | State |
---|---|---|---|
Turkey | Sefa Haktan Hatik | Sinop | Turkeli |
Lead Sponsor | Collaborator |
---|---|
Sinop University |
Turkey,
Annoni EM, Van Helden D, Guo Y, Levac B, Libbus I, KenKnight BH, Osborn JW, Tolkacheva EG. Chronic Low-Level Vagus Nerve Stimulation Improves Long-Term Survival in Salt-Sensitive Hypertensive Rats. Front Physiol. 2019 Jan 31;10:25. doi: 10.3389/fphys.2019.00025. eCollection 2019. — View Citation
Annoni EM, Xie X, Lee SW, Libbus I, KenKnight BH, Osborn JW, Tolkacheva EG. Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology. Physiol Rep. 2015 Aug;3(8). pii: e12476. doi: 10.14814/phy2.12476. — View Citation
Antonino D, Teixeira AL, Maia-Lopes PM, Souza MC, Sabino-Carvalho JL, Murray AR, Deuchars J, Vianna LC. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial. Brain Stimul. 2017 Sep - Oct;10(5):875-881. doi: 10.1016/j.brs.2017.05.006. Epub 2017 May 19. — View Citation
Beh SC, Friedman DI. Acute vestibular migraine treatment with noninvasive vagus nerve stimulation. Neurology. 2019 Oct 29;93(18):e1715-e1719. doi: 10.1212/WNL.0000000000008388. Epub 2019 Sep 25. — View Citation
Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015 Sep;22(9):1260-8. doi: 10.1111/ene.12629. Epub 2015 Jan 23. Review. — View Citation
Busch V, Zeman F, Heckel A, Menne F, Ellrich J, Eichhammer P. The effect of transcutaneous vagus nerve stimulation on pain perception--an experimental study. Brain Stimul. 2013 Mar;6(2):202-9. doi: 10.1016/j.brs.2012.04.006. Epub 2012 May 7. — View Citation
Chen M, Yu L, Liu Q, Jiang H, Zhou S. Vagus nerve stimulation: A spear role or a shield role in atrial fibrillation? Int J Cardiol. 2015 Nov 1;198:115-6. doi: 10.1016/j.ijcard.2015.06.171. Epub 2015 Jul 5. — View Citation
Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014 Nov-Dec;7(6):871-7. doi: 10.1016/j.brs.2014.07.031. Epub 2014 Jul 16. — View Citation
Colzato LS, Ritter SM, Steenbergen L. Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia. 2018 Mar;111:72-76. doi: 10.1016/j.neuropsychologia.2018.01.003. Epub 2018 Jan 8. — View Citation
Dalli J, Colas RA, Arnardottir H, Serhan CN. Vagal Regulation of Group 3 Innate Lymphoid Cells and the Immunoresolvent PCTR1 Controls Infection Resolution. Immunity. 2017 Jan 17;46(1):92-105. doi: 10.1016/j.immuni.2016.12.009. Epub 2017 Jan 5. — View Citation
Hong GS, Zillekens A, Schneiker B, Pantelis D, de Jonge WJ, Schaefer N, Kalff JC, Wehner S. Non-invasive transcutaneous auricular vagus nerve stimulation prevents postoperative ileus and endotoxemia in mice. Neurogastroenterol Motil. 2019 Mar;31(3):e13501. doi: 10.1111/nmo.13501. Epub 2018 Nov 8. — View Citation
Lataro RM, Silva CA, Fazan R Jr, Rossi MA, Prado CM, Godinho RO, Salgado HC. Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure. Am J Physiol Regul Integr Comp Physiol. 2013 Oct 15;305(8):R908-16. doi: 10.1152/ajpregu.00102.2013. Epub 2013 Aug 15. — View Citation
Lee SW, Li Q, Libbus I, Xie X, KenKnight BH, Garry MG, Tolkacheva EG. Chronic cyclic vagus nerve stimulation has beneficial electrophysiological effects on healthy hearts in the absence of autonomic imbalance. Physiol Rep. 2016 May;4(9). pii: e12786. doi: 10.14814/phy2.12786. — View Citation
Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004 Jan 6;109(1):120-4. Epub 2003 Dec 8. — View Citation
Liu JJ, Huang N, Lu Y, Zhao M, Yu XJ, Yang Y, Yang YH, Zang WJ. Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro. Sci Rep. 2015 Nov 24;5:17108. doi: 10.1038/srep17108. — View Citation
Möller M, Mehnert J, Schroeder CF, May A. Noninvasive vagus nerve stimulation and the trigeminal autonomic reflex: An fMRI study. Neurology. 2020 Mar 10;94(10):e1085-e1093. doi: 10.1212/WNL.0000000000008865. Epub 2020 Feb 6. — View Citation
Nur Gökçe, E , Pinar Cengi?z, Z , Erbas, O . (2018). Uzun ömrün sirri: Vagus siniri . Istanbul Bilim Üniversitesi Florence Nightingale Tip Dergisi , 4 (3) , 154-165 . Retrieved from https://dergipark.org.tr/tr/pub/ibufntd/issue/39718/470405
Oshinsky ML, Murphy AL, Hekierski H Jr, Cooper M, Simon BJ. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain. 2014 May;155(5):1037-1042. doi: 10.1016/j.pain.2014.02.009. Epub 2014 Feb 14. — View Citation
Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia. 1990;31 Suppl 2:S40-3. — View Citation
Sabino-Carvalho, J.L., et al., Non-invasive Vagus Nerve Stimulation Acutely Improves Blood Pressure Control in a Placebo Controlled Study. The FASEB Journal, 2017. 31(1_supplement): p. 848.8-848.8.
Silberstein SD, Calhoun AH, Lipton RB, Grosberg BM, Cady RK, Dorlas S, Simmons KA, Mullin C, Liebler EJ, Goadsby PJ, Saper JR; EVENT Study Group. Chronic migraine headache prevention with noninvasive vagus nerve stimulation: The EVENT study. Neurology. 2016 Aug 2;87(5):529-38. doi: 10.1212/WNL.0000000000002918. Epub 2016 Jul 13. — View Citation
Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. 2015;16:543. doi: 10.1186/s10194-015-0543-3. Epub 2015 Jul 9. — View Citation
Tassorelli C, Grazzi L, de Tommaso M, Pierangeli G, Martelletti P, Rainero I, Dorlas S, Geppetti P, Ambrosini A, Sarchielli P, Liebler E, Barbanti P; PRESTO Study Group. Noninvasive vagus nerve stimulation as acute therapy for migraine: The randomized PRESTO study. Neurology. 2018 Jul 24;91(4):e364-e373. doi: 10.1212/WNL.0000000000005857. Epub 2018 Jun 15. — View Citation
Tiedt N, Religa A. Vagal control of coronary blood flow in dogs. Basic Res Cardiol. 1979 May-Jun;74(3):266-76. — View Citation
Tracey, K.J., Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation. 2003, Google Patents
Xie X, Lee SW, Johnson C, Ippolito J, KenKnight BH, Tolkacheva EG. Intermittent vagal nerve stimulation alters the electrophysiological properties of atrium in the myocardial infarction rat model. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1575-8. doi: 10.1109/EMBC.2014.6943904. — View Citation
Yoo PB, Liu H, Hincapie JG, Ruble SB, Hamann JJ, Grill WM. Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog. Physiol Rep. 2016 Feb;4(2). pii: e12689. doi: 10.14814/phy2.12689. — View Citation
Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache. 2016 Feb;56(2):259-66. doi: 10.1111/head.12650. Epub 2015 Sep 18. Review. — View Citation
* Note: There are 28 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Sportive performance | Athletic performance during exercise in healthy individuals, cycling length in kilometers. Measured twice, during first and second exercises. | Change from Baseline at Second Exercise | |
Secondary | Pulse | Heart beats per minute. Measured 3 times; before the first exercise, after the first exercise, after the second exercise. | Change from Baseline at 5 minutes | |
Secondary | Pulse | Heart beats per minute. Measured 3 times; before the first exercise, after the first exercise, after the second exercise. | 15 minutes | |
Secondary | Numerical pain scale (NPS), | Amount of pain described by patients. Patients are asked to circle the number between 0 and 10. Zero represents 'no pain at all' whereas ten represents 'the worst pain ever possible'. Measurement is done twice; after the first and the second bicycle exercises. | Change from Baseline at 15 minutes | |
Secondary | Respiratory Rate | The respiratory rate corresponds to the number of breaths taken per minute. The rate of respiration measured 3 times; before the first exercise, after the first exercise, after the second exercise. | Change from Baseline at 5 minutes | |
Secondary | Respiratory Rate | The respiratory rate corresponds to the number of breaths taken per minute. The rate of respiration measured 3 times; before the first exercise, after the first exercise, after the second exercise. | 15 minutes | |
Secondary | Systolic Blood Pressure | Systolic Pressure measured 3 times; before the first exercise, after the first exercise, after the second exercise. Blood pressure recorded as mmHg. Measured 3 times; before the first exercise, after the first exercise, after the second exercise. | Change from Baseline at 5 minutes | |
Secondary | Systolic Blood Pressure | Systolic Pressure measured 3 times; before the first exercise, after the first exercise, after the second exercise. Blood pressure recorded as mmHg. Measured 3 times; before the first exercise, after the first exercise, after the second exercise. | 15 minutes | |
Secondary | Diastolic Blood Pressure | Diastolic Pressure measured 3 times; before the first exercise, after the first exercise, after the second exercise. Blood pressure recorded as mmHg. Measured 3 times; before the first exercise, after the first exercise, after the second exercise. | Change from Baseline at 5 minutes | |
Secondary | Diastolic Blood Pressure | Diastolic Pressure measured 3 times; before the first exercise, after the first exercise, after the second exercise. Blood pressure recorded as mmHg. Measured 3 times; before the first exercise, after the first exercise, after the second exercise. | 15 minutes | |
Secondary | Saturation | Percentage of Oxygen saturation in blood. Measured 3 times; before the first exercise, after the first exercise, after the second exercise. | Change from Baseline at 5 minutes | |
Secondary | Saturation | Percentage of Oxygen saturation in blood. Measured 3 times; before the first exercise, after the first exercise, after the second exercise. | 15 minutes |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06052553 -
A Study of TopSpin360 Training Device
|
N/A | |
Completed |
NCT05511077 -
Biomarkers of Oat Product Intake: The BiOAT Marker Study
|
N/A | |
Recruiting |
NCT04632485 -
Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
|
||
Completed |
NCT05931237 -
Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults
|
N/A | |
Completed |
NCT04527718 -
Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers
|
Phase 1 | |
Terminated |
NCT04556032 -
Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women
|
N/A | |
Completed |
NCT04107441 -
AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects
|
Phase 1 | |
Completed |
NCT04065295 -
A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225
|
Phase 1 | |
Completed |
NCT04998695 -
Health Effects of Consuming Olive Pomace Oil
|
N/A | |
Completed |
NCT01442831 -
Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects
|
Phase 1 | |
Terminated |
NCT05934942 -
A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood
|
Phase 1 | |
Recruiting |
NCT05525845 -
Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI
|
N/A | |
Completed |
NCT05515328 -
A Study in Healthy Men to Test How BI 685509 is Processed in the Body
|
Phase 1 | |
Completed |
NCT05030857 -
Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects
|
Phase 1 | |
Completed |
NCT04967157 -
Cognitive Effects of Citicoline on Attention in Healthy Men and Women
|
N/A | |
Recruiting |
NCT04714294 -
Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers
|
Phase 1 | |
Recruiting |
NCT04494269 -
A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls
|
Phase 1 | |
Completed |
NCT04539756 -
Writing Activities and Emotions
|
N/A | |
Recruiting |
NCT04098510 -
Concentration of MitoQ in Human Skeletal Muscle
|
N/A | |
Completed |
NCT03308110 -
Bioavailability and Food Effect Study of Two Formulations of PF-06650833
|
Phase 1 |