View clinical trials related to Healthcare-Associated Pneumonia.
Filter by:Multicenter, randomized open label clinical trial to evaluate IEM and HS as concomitant therapy for respiratory tract infection in patients under artificial ventilation in the ICU. Lung infection is a serious complication that may occur during hospital stay and may need artificial respiration or even develop during artificial ventilation for other causes. Current specific treatment consists of intravenous antibiotics. The current study evaluated whether aspiration and drainage of infected sputum helps curing this severe complication and whether nebulized HS has additional benefits, like eradicating bacteria or reducing inflammation.
Determine the efficacy of dexamethasone plus standard of care (SOC) as compared to placebo plus SOC for treating severe hospital-acquired pneumonia in critically ill patients with a proinflammatory phenotype; It's an international phase III, double-blind, placebo-controlled, randomized trial.
The primary aim of this single-center, prospective, randomized, controlled, study is to test the hypothesis that inhalation of NO 200 ppm prevents the development of nosocomial pneumonia in patients at risk after cardiac surgery under CPB. The study is interventional. Examination and treatment of patients is carried out in accordance with the approved standards of medical care for the relevant diseases. During the study, no experimental or unregistered (not approved for use) medical or diagnostic procedures in the territory of the Russian Federation will be carried out. The study includes patients admitted to the Cardiac Surgery Department of Cardiology Research Institute of Tomsk National Research Medical Center for elective surgery with CPB.
This is a multicenter, prospective randomized controlled trial. At least 2 but no more than 5 centers are expected to participate in the study. The primary objective is to test the hypothesis that the addition of high-dose inhaled nitric oxide therapy to standard treatment has a positive effect on the clinical course of pneumonia and the structure and function of cardiopulmonary system. Number of participants: 200, including the subproject NO-PNEUMONIA-CAP - 100 CAP participants, the subproject NO-PNEUMONIA-NP - 100 NP participants. Number of groups: 4 Inhalation of iNO at a dose of 200 ppm for 30 minutes under the control of methemoglobin level (no more than 5%) three times a day if the patient is allocated to the main group. The general course of iNO therapy will last until the pneumonia resolves, but no more than 7 days. Recording of vital signs and safety assessment will be carried out immediately before the initiation of NO therapy and every 15 minutes after its start (pulse, blood pressure, respiratory rate, SpO2, temperature, MetHb level).
This is a Phase 3, randomized, multicenter, double-blind, non-inferiority study to evaluate the efficacy and safety of cefepime-taniborbactam compared to meropenem in patients ≥ 18 years of age with ventilated HABP or VABP.
The primary aim of this single-center, prospective, randomized, controlled, pilot study is to test the hypothesis that inhalation of NO 200 ppm prevents the development of nosocomial pneumonia in patients at risk after cardiac surgery with CPB. The study is interventional. Examination and treatment of patients is carried out in accordance with the approved standards of medical care for the relevant diseases. During the study, no experimental or unregistered (not approved for use) medical or diagnostic procedures in the territory of the Russian Federation will be carried out. The study includes patients admitted to the Cardiac Surgery Department of Cardiology Research Institute of Tomsk National Research Medical Center for elective surgery with CPB.
Almost 90 out of 100 people carry herpes simplex viruses (HSV). Once a person has been infected with the herpes viruses, he or she can't get rid of them for the rest of her/his life. For the most part, the viruses are in a dormant state. Only when the immune system is weakened, for example in the case of a serious illness or stress, are the viruses reactivated. They then mainly cause cold sores, which are harmless for healthy people and usually heal without therapy. However, especially in people with a weakened immune system, HSV can also cause serious infections, such as meningitis. In almost every second mechanically ventilated patient in intensive care who has pneumonia, HSV can be detected in the respiratory tract. This is caused by reactivation of the viruses as a result of the severe underlying disease and stress during intensive care therapy. Whether treatment of the herpes viruses (e.g. with acyclovir) is necessary in this situation and helps the patients to cure has not been clarified, especially as acyclovir can also cause side effects such as a deterioration in kidney function. Currently, the physicians decide to treat the herpes viruses in about half of the patients. Several studies have shown that patients for whom the physician decided to treat the viruses survived more often. However, all of these studies looked at the course of the disease only retrospectively and thus are subject to many biases (including physician selection of who receives treatment, missing data). A definitive conclusion as to whether herpesvirus therapy can be recommended cannot be drawn without doubt from these studies. Therefore, the investigators would like to investigate in a randomized controlled trial, i.e. patients are randomly assigned to the experimental (therapy of herpesviruses) or control group (no therapy of herpesviruses), the effect of therapy with acyclovir on survival in mechanically ventilated intensive care patients with lower respiratory tract infection (pneumonia) in whom a large amount of HSV was found in the respiratory tract. The goal of the study is to provide clarity on whether therapy will help patients recover.
The goal of this prospective and observatory study is to learn about the pathogen, clinical manifestations, prognosis, treatment and antibiotic resistance of bacteria in hospital-acquired pneumonia patients in China. The main purposes of this study are: 1. clarify the regional differences and changes over time in the pathogen spectrum and antibiotic resistance rate among HAP patients in China; 2. build a continuously optimized nationwide HAP pathogen and antibiotic resistance surveillance network; 3. identify the molecular epidemiology of common pathogens
The goal of this clinical trial is to propose a seamless intervention linking rapid bacterial isolate identification and antibiotic resistance gene detection and targeted antibiotic prescription to minimise time between infection onset and appropriate treatment in patients with Pseudomonas aeruginosa or carbapenemase producing Enterobacterales infections. This is an investigator initiated trial. The primary hypothesis is that these interventions will lead to improved clinical outcomes amongst patients with hospital-acquired bloodstream infection, hospital-acquired pneumonia or ventilator-associated pneumonia due to carbapenem non-susceptible Pseudomonas aeruginosa or Enterobacterales, compared to standard antibiotic susceptibility testing. Patients will be randomised to either a control or intervention arm. Patients randomised to the intervention arm will have relevant specimens analysed by rapid microbiological diagnostics and will have early availability of ceftazidime-avibactam if appropriate. Patients randomised to the control arm, will have samples analysed by clinical microbiology laboratories using standard of care diagnostics. Antibiotics will be available to these patients as per usual institutional practice.
Multicenter, randomized, controlled, open-label trial to assess if semiquantitative multiplex PCR assay, as compared to conventional microbiology, can reduce the percentage of patients without microbiological diagnosis in the first 24 hours from HAP/VAP suspicion, thus allowing early de-escalation.